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Abstract

The beta transformation is the iterated map βx mod 1. The special case of
β = 2 is known as the Bernoulli map, and is exactly solvable. The Bernoulli map
provides a model for pure, unrestrained chaotic (ergodic) behavior: it is the full
invariant shift on the Cantor space {0,1}ω . The Cantor space consists of infinite
strings of binary digits; it is notable for many properties, including that it can
represent the real number line.

The beta transformation defines a subshift: iterated on the unit interval, it sin-
gles out a subspace of the Cantor space that is invariant under the action of the
left-shift operator. That is, lopping off one bit at a time gives back the same sub-
space.

The beta transform seems to capture something basic about the multiplication
of two real numbers: β and x. It offers insight into the nature of multiplication.
Iterating on multiplication, one would get β nx – that is, exponentiation; the mod 1
of the beta transform contorts this in strange ways.

Analyzing the beta transform is difficult. The work presented here is a research
diary: a collection of observations and occasional insights. One is that chaos seems
to be rooted in how the carry bit behaves during multiplication. Another is that one
can surgically insert “islands of stability” into chaotic (ergodic) systems, and have
some fair amount of control over how those islands of stability behave. One can
have islands with, or without a period-doubling “route to chaos”.

The eigenvalues of the transfer operator seem to lie on a circle of radius 1/β in
the complex plane. Given that the transfer operator is purely real, the appearance
of such a quasi-unitary spectrum unexpected. The spectrum appears to be the limit
of a dense set of quasi-cyclotomic polynomials, the positive real roots of which
include the Golden and silver ratios, the Pisot numbers, the n-bonacci (tribonacci,
tetranacci, etc.) numbers.

*Diary started in December 2017, with major updates published in February 2018 and December 2018.
Minor fixes and corrections in September 2020. Major expansion in January 2024.
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1 Introduction
The last three or four decades of mathematical research has seen dramatic advances
in the theory of subshifts. This text is mostly not about that, except to point out that
this theory has very broad and important impact on many branches of physics and
mathematics. From the perspective of the amateur enthusiast, the theory of subshifts
finally exposes and makes clear some of the mysterious and intriguing behavior of
fractals and of chaotic dynamical systems.

This text focuses almost entirely on just one particular map of the unit interval, the
β -transform, defined as the iterated map βx mod 1. As such, it is an example of an
iterated map on the unit interval of the real number line. Such maps have the form

f : [0,1]→ [0,1]

and the topic is the exploration of the consequence of iterating the map by composing:

f n(x) = ( f ◦ f ◦ · · · ◦ f )(x) = f ( f (· · · f (x) · · ·))

Such one-dimensional iterated maps have been heavily studied, and there is a large
body of results, interconnecting many different concepts and results from mathematics,
and so having a particularly broad range.

This text attempts to report some brand-new results on the β -transform. This is
perhaps surprising, as one might think that the β -transform is sufficiently simple so as
to be well-studied and well-understood, it being among the very simplest of iterated
one-dimensional maps. This text also attempts to report these results in a naive and
unsophisticated fashion, in the hope that this makes the text readable for the interested
student and casual enthusiast.

Thus, although the author is personally excited by the advances in the field, this
text is neither a survey of known results on the β -transform, nor does it much glance
at most of the typical avenues that are available for studying one-dimensional maps.
This text does focus extensively on the spectrum of the transfer operator (the “Ruelle
Perron Frobenius operator”), and thus it contributes to the general “Koopmania”. Little
prior knowledge is assumed, and the needed concepts are introduced in a very casual
and informal way. This will, no doubt, completely discourage and dismay the formally
trained mathematician. The best I can offer is to reiterate: “new results”, off the beaten
track.

This text begins with some pretty pictures, showing the iterated tent and logistic
maps, so as to remind the reader as to why this is an interesting problem to study. The
fact is that the β -transformation is far more dry and abstract than the rather sexy logistic
map, or its complex cousin, the Mandelbrot set. The hope is that the β -transformation
is also simpler, and therefore, perhaps, easier to understand. The reader will soon
discover that there is nothing particularly easy about it, and that, at every turn, one
bumps into other interesting areas of mathematics that could, perhaps should shed some
light, but don’t actually seem to do so, in practice.

The most fun for the casual reader might be chapter 5, on the periodic orbits, where
the quasi-cyclotomic polynomials appear; these are polynomials of the form pn (z) =
zk+1 − b0zk − b1zk−1 −·· ·− bk−1z− 1 for the b j being binary bits (zero or one). Also
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quite fun is the section on the islands of stability, which sheds light on how one can take
a purely ergodic (chaotic) system, and surgically insert, as desired, islands of stability.
The point here is that the classic logistic map attracted interest precisely because of its
interleaving of chaos and stability; it turns out, one can manufacture such systems, at
will.

A word about the format of this paper: this is a de facto “research diary”, not a
formal report. This, it contains various unfinished corners, maybe some errors, and
notes-to-self.

1.1 Bernoulli shift
The Bernoulli shift, also known as the bit-shift map, the dyadic transform and the full
shift, is an iterated map on the unit interval, given by

b(x) =

{
2x for 0 ≤ x < 1

2
2x−1 for 1

2 ≤ x ≤ 1
(1)

It can be written much more compactly as b(x) = 2x mod 1. The symbolic dynamics
of this map gives the binary digit expansion of x. That is, write

bn(x) = (b◦b◦ · · · ◦b)(x) = b(b(· · ·b(x) · · ·))

to denote the n-fold iteration of b and let b0(x) = x. The symbolic dynamics is given
by the bit-sequence

bn (x) =

{
0 if 0 ≤ bn(x)< 1

2
1 if 1

2 ≤ bn(x)≤ 1
(2)

Attention: n is a subscript on the left, and a superscript on the right! The left is a
sequence, the right is an iteration. Using the letter b one both sides is a convenient
abuse of notation. Notation will be abused a lot in this text, except when it isn’t. The
symbolic dynamics recreates the initial real number:

x =
∞

∑
n=0

bn (x)2−n−1 (3)

All of this is just a fancy way of saying that a real number can be written in terms of
it’s base-2 binary expansion. That is, the binary digits for x are the bn = bn (x), so that

x = 0.b0b1b2 · · ·

is a representation of a real number with a bit-string.

1.2 Bijections
A variety of mathematical objects that can be placed into a bijection with collections of
bit-strings, and much of this text is an exploration of what happens when this is done.
There will be several recurring themes; these are reviewed here.
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The collection of all infinitely-long bit-strings {0,1}ω = {0,1}× {0,1}× ·· · is
known as the Cantor space; ω denotes countable infinity, so this is a countable product
of repeated copies of two things. Closely related is the Cantor set, which is famously
the collection of points y = ∑

∞
n=0 bn (x)3−n−1 that results from taking the binary ex-

pansion of a real number, and re-expressing it as a base-three expansion. The Cantor
set can also be constructed by repeatedly removing the middle-third. If one is careful
that the middle-third is always an open set, what remains after a single subtraction is
a closed set. What remains after infinite repetition is a “perfect set”, and a key theo-
rem is that this perfect set is identical to the collection of points obtained with the sum
above. Bouncing between these two distinct constructions requires the definition of the
product topology on Cantor space, and thence the Borel sigma algebra, so that one can
work in a consistent way with set complements. These ideas will be reviewed as the
need arises.

Associated with Cantor space is the infinite binary tree. Any given location in the
tree can be specified by giving a sequence of left-right moves, down the tree, starting
at the root. Such left-right moves can (of course) be interpreted as bit-strings. After
a finite number of moves, one arrives at a node, and under that node extends another
infinite binary tree, just like the original. If one has a function f (b) that is defined on
every node b of the binary tree, then one can compare this function to f (Lb) and f (Rb)
that result from a left move and a right move. If these are equal to each other, or scale
in some way when compared to the original, or if there exist two other functions gL and
gR such that f (Lb) = gL ( f (b)) for all b, and likewise, that f (Rb) = gR ( f (b)), then
one has fractal self-similarity. More explicitly, whenever one has a pair of commuting
diagrams, f ◦ L = gL ◦ f and , f ◦ R = gR ◦ f , then one has a dyadic monoid self-
symmetry. This is the symmetry of a large class of fractals.

1.2.1 Formalities

The last paragraph is a bit glib, and so some formalities and examples are in order.
These are all very straightforward and conventional, almost trivial, belaboring the ob-
vious. Despite the seeming triteness of the next handful of paragraphs, these formal
definitions will be needed, so as to avoid future ambiguities and confusions.

Let M = {L,R}<ω denote the collection of finite-length binary strings. These can
be graded by the length ν of the string, so that

M= {L,R}<ω =
∞⋃

ν=0

{L,R}ν = ε ∪{L,R}∪ ({L,R}×{L,R})∪·· ·

with ε denoting the empty (zero-length) string. This can be turned into a monoid
by defining multiplication as string concatenation: given γ ∈ {L,R}n some sequence
of L,R moves of length n, and γ ′ ∈ {L,R}m some other sequence of length m, then
γγ ′ ∈ {L,R}n+m is some other string of length m+n.

This set is in bijection to the integers in a straight-forward way. This bijection,
written as κ : {L,R}<ω → N, can be defined recursively, by a simple commuting dia-
gram. Define κ (ε) = 1 and ask that κ (Lγ) = 2κ (γ) and that κ (Rγ) = 2κ (γ)+ 1 for
every γ ∈ {L,R}n. Thus, κ (L) = 2 and κ (R) = 3 and LL,LR,RL,RR map to 4,5,6,7
respectively.
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This bijection commutes with the canonical L,R moves on the natural numbers.
Write these as a pair of functions L : N→N and R : N→N, defined as L : m 7→ 2m and
R : m 7→ 2m+ 1. Interpreting these as strings, one promptly has a pair of commuting
diagrams κ ◦L = L◦κ and κ ◦R = R◦κ . True formality would have required writing
κ ◦Ls = LN ◦κ or even that κ (Lsγ) = LN (κ (γ)) in order to remind us that Ls is a string
(of length one) concatenated onto some other string γ , while LN is a map of the natural
numbers. It is convenient to drop these labels, as they mostly serve to clutter the text.
The intended meaning is always clear from context.

Associated with the set {L,R}<ω is a binary tree B. It can be defined as a graph
of vertexes v j and edges ei j connecting vertex vi to vertex v j. Formally, it is the graph
B=

{
vi,ei j : i ∈ N, j ∈ {2i,2i+1}

}
. Every vertex vi ∈B can be given an integer label:

it is just the integer i itself. To formalize this, there is a map η : N→ B that provides
this labeling. The canonical labeling gives the root node a label of 1, the left and right
sub-nodes 2,3, and so on.

The canonical moves on this binary tree are L : B→ B and R : B→ B defined by
L : vi 7→ v2i and L : vi 7→ v2i+1. Just as above, these commute with the left and right
moves on the integers. So, η ◦L = L◦η and η ◦R = R◦η .

The pattern repeats. Consider the set D of dyadic rationals between zero and one.
These are fractions that can be written as (2n+1)/2m for some non-negative integers
m,n. These are in one-to-one correspondence with the integers: there is a canonical
bijection is δ :D→N given by δ : (2n+1)/2m 7→ 2m−1+n. There are obvious left and
right moves, given by δ ◦L = L◦δ and δ ◦R = R◦δ . So, for example, L(1/2) = 1/4
and R(1/2) = 3/4. Viewed as a tree, this places 1/2 at the root of the tree, and 1/4 and
3/4 as the nodes to the left and right.

All of these maps were bijections: they are all invertable. They place elements of all
four objects M,N,B,D in one-to-one correspondence with each other. The commuta-
tion of the L,R moves guarantees that the multiplication on M, i.e. string concatenation,
allows elements γ ∈M to act on N,B,D in the obvious, intended way.

1.2.2 Example: Julia Sets

As a practical example of the above machinery, consider the Julia set of the Mandelbrot
map. Recall the Mandelbrot map is an iterated map on the complex plane, given by
z 7→ z2 + c. The Julia set is the set of points of “where things came from” in the
Mandelbrot map; it is the inverse “map” z 7→ ±

√
z− c. The word “map” is in scare

quotes, as the plus-minus in front of the square root indicate that each z maps to either
one of two distinct predecessors. The choice of the plus-minus signs can be interpreted
as left-right moves, and so the Julia set can be interpreted as a representation of the
binary tree, with it’s elements labeled by integers, or dyadic fractions, or nodes in the
binary tree, or strings of ones and zeros.

We take a moment to make this explicit. Fix a point c ∈ C in the complex plane.
Define a function jc : N → C recursively, by writing jc (1) = 0 and then jc (2m) =
−
√

jc (m)− c and jc (2m+1) =+
√

jc (m)− c. Equivalently, there are a pair of moves
on the complex plane, Lc : C→ C and Rc : C→ C given by Lc : z →−

√
z− c and Rc :

z →+
√

z− c which commute with the Julia map: jc ◦L = Lc ◦ jc and jc ◦R = Rc ◦ jc.
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The skeleton of the Julia set is a set of points in the complex plane:

Jc = {z ∈ C : z = jc (n) ,n ∈ N}

The full Julia set is the closure Jc which includes all of the limit points of Jc. The set
Jc is countable; the closure Jc is uncountable.

1.2.3 Example: de Rham Curves

The above construction generalizes. Given any pair of functions f : X → X and g : X →
X and a point x0 ∈ X for any space X , the dyadic monoid induces a map j : N → X
given recursively as j (1) = x0 and j (2m) = f ( j (m)) and j (2m+1) = g( j (m)). As a
commuting diagram, one has that j ◦L = f ◦ j and j ◦R = g◦ j. This in turn induces a
set J = {x ∈ X : x = j (n) ,n ∈ N}. If the space X is a topological space, so that limits
can be meaningfully taken, then one also has the closure J.

In 1957, Georges de Rham notes that if X is a topological space, so that continuity
can be defined, and if there exist two points xa,xb ∈ X such that g(xa) = f (xb), then
the set J is a continuous curve.[1] The original proof also requires that X be a metric
space, and that the two functions f ,g be suitably contracting, so that the set J remains
compact. More precisely, so that the Banach fixed-point theorem can be applied, giving
two fixed points xa = f (xa) and xb = g(xb). Without compactness, the curve wanders
off to infinity, where conceptions of continuity break down. It is no longer a curve,
“out there”.

The continuity condition g(xa) = f (xb) and the fixed points have a direct interpre-
tation from the viewpoint of the binary tree B. Pick a point x ∈ X , any point at all, and
make nothing but left moves: the infinite string LLL · · · . The map converts this to the
iteration f ( f (· · ·(x))) which converges onto the fixed point xa = f (xa). Likewise, all
right-moves converge onto xb = g(xb). In between, there all other branches in B; but
there are also the “gaps” in between the branches.

Consider the two paths RLLL · · · and LRRR · · · down the tree. Both start at the
root, but end up at different places. Yet, they are immediate neighbors: there are no
other branches “in between” these two. Such immediate neighbors always lie at either
end of a “gap”. Each gap is headed up by the root that sits immediately above them,
so that each gap can be labeled by the node from which these two distinct branches
diverged. The continuity condition asks that these gaps be closed up: the requirement
that g(xa) = f (xb) is the requirement that the two sides of the central gap converge to
the same point. The curve becomes continuous at this point. By self-similarity, each
gap in the tree closes up; the curve is continuous at all such gaps.

As a specific example, consider X = R and f (x) = x/2 and g(x) = (x+1)/2.
The fixed points are f (0) = 0 and g(1) = 1 and the continuity condition is satisfied:
g(0) = f (1). Iteration produces a curve that is just all of the real numbers of the unit
interval. This curve is just the standard mapping of the Cantor space to the unit interval:
it is one-to-one for all points that are not dyadic rationals, and it is two-to-one at the
dyadic rationals, as the continuity condition explicitly forces the two-to-one mapping.

Note that Julia sets are not de Rham curves: they don’t satisfy the continuity crite-
rion.
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1.2.4 Shifts

Adjoint to the left and right moves is a shift τ that undoes what the L and R moves do.
It cancels them out, so that τ ◦L = τ ◦R = e with e the identity function.

Given a string γ ∈ M of length ν , consisting of letters a0a1 · · ·aν−1 so that each
ak ∈ {L,R} is a single letter, define the shift τ : M→M as the function that lops off a
single letter from the front, so that τ : a0a1 · · ·aν−1 7→ a1a2 · · ·aν−1 is a string that is one
letter shorter. This shift is adjoint to the moves L,R, which prepend either L or R to the
string. That is, L :M→M which acts on strings as L : γ 7→ Lγ , and likewise, R : γ 7→Rγ .
Then, taken as functions, τ ◦L = τ ◦R = e with e being the identity function on M, the
function that does nothing. The shift τ is only an adjoint, not an inverse, since there is
no way to reattach what was lopped off, at least, not without knowing what it was in
the first place. Thus L◦τ ̸= e ̸= R◦τ . The maps L,R were one-to-one but not onto; the
map τ is onto but not one-to-one.

The shift can be composed with either κ or with δ , to have the obvious effect.
It’s handy to introduce a new letter and a new function T : N → N so that one has
T ◦κ = κ ◦ τ acting as T (2m) = T (2m+1) = m. Since τ applied to the empty string
returns the empty string, so also T (1) = 1. Recycling the same letter T : D→ D and
defining it so that δ ◦T = T ◦δ one can infer that T x = 2x mod 1 for any x ∈ D. So,
for example, T (1/4) = T (3/4) = 1/2.

On the binary tree B, the shift moves back up the tree, from either the left or the
right side. That is, given a vertex v ∈ B, it is the map τ : v2m 7→ vm and likewise
τ : v2m+1 7→ vm.

For the Julia set example, it has a meaningful form: τ : z = jc (n) 7→ z2 + c. It
re-does what the two Julia set maps undid. It is onto: it maps Jc into all of Jc, and
likewise Jc onto Jc. For the de Rham curve example, it maps the curve back onto itself.
In all three examples, these sets are fixed points of τ . Taking Jc ⊂ C as a subset of
the complex plane, it is invariant under the action of τ , so that one has τ (Jc) = Jc
and likewise τ

(
Jc
)
= Jc. Likewise, the de Rham curve stays fixed in X . These are all

examples of invariant subspaces.

1.2.5 Completions

The previous section defined a binary tree B, but this tree is not the “infinite binary tree”
alluded to in the opening paragraphs. It is incomplete, in that it does not go “all the way
down” to it’s leaves. It is not compact, in the same sense that the dyadic fractions D are
not compact: the limit points are absent. The Cantor tree B is the closure or completion
ore compactification of B; it contains all infinitely-long branches, all the way down to
the “leaves” of the tree. The Cantor tree B is in one-to-one correspondence with the
Cantor space {0,1}ω , and both can be mapped down to the reals on the unit interval,
using eqn 3. None of this is particularly deep, but a few paragraphs to articulate these
ideas will help avoid later confusion and imprecision.

To convert letter strings to binary strings, define a function b : M→{0,1} such that
it returns 0 if the first letter of a string is L, and otherwise it returns 1. If the string is
of zero length, then one has a choice: one can take b to be undefined, or let it be 0, or
1, or introduce a wild-card character ∗ = 0∨ 1 denoting “either zero or one”. For the
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present, any of these choices is satisfactory. The wildcard is appealing when working
with the product topology; but, at the moment, we have no topologies at play.

To extract the n’th letter from a string, define bn : M→{0,1} as bn = b◦ τn. Thus,
given γ ∈M of length ν , one can create a bitstring b0b1 · · ·bν−1. It can be assigned the
obvious numerical value:

[
δ
−1 ◦κ

]
(γ) =

ν−1

∑
n=0

bn (γ)2−n−1

Comparing this to eqn 3, the completion is obvious: M = {L,R}<ω is completed as
M = {L,R}ω so that it contains all strings of infinite length. This is consistent with
the completion of the dyadic rationals D being the entire real unit interval: D = [0,1].
There is no completion N of the countable numbers, at least, not unless one wishes
to say that it is the uncountable infinity. This could be done, but then the games gets
even more circular, as this completion is just the Cantor set, and we already have that.
It seems best to leave N undefined, to avoid circular confusions. The completion B
engenders similar confusion. In the original definition, B was defined as a graph with
a countable number of vertexes, each labeled with an integer. This labeling must be
abandoned: B is a graph with an uncountable number of vertexes, each labeled by an
element from M.

The distinction between M, B and {0,1}ω becomes hard to maintain at this point:
they are all isomorphic. The distinction between M and {0,1}ω is particularly strained:
they are both collections of strings in two symbols. The primary purpose of trying
to maintain this distinction is to remind that M should be though of as a collection
of actions that can be applied to sets, while {0,1}ω is a set, a collection of points
that sometimes act as labels for things. This distinction is useful for avoiding off-
by-one mistakes during calculations; it is a notational convenience. This is a variant
of common practice in textbooks: after showing that two things are isomorphic, only
rarely is the notation collapsed into one big tangle. One maintains a Rosetta Stone
of different ways of writing the same thing. And so here: a distinction without a
difference.

1.3 Shift space
The shift τ was defined above as an operator that takes a sequence of letters, and lops
off the left-most symbol, returning a new sequence that is the remainder of the string.
A shift space S is any subset of the set of all infinite strings that remains invariant under
the shift: τS = S.

In general settings, one considers a vocabulary of N letters, and the set of infinite
sequences Nω , so that a shift space S ⊆ Nω is a subset of the “full shift” Nω (which is
trivially invariant under τ). Shifts that are proper subsets of a full shift will be called
subshifts. For the Bernoulli shift, there are N = 2 letters, and the Bernoulli shift is
by definition the full shift 2ω = {0,1}ω . A trivial example of a subshift that is not
a full shift is the set S = {0ω ,1ω}; it has two elements, and is obviously invariant;
both 0ω and 1ω are fixed points of τ . Another example is S =

{
(01)ω ,(10)ω

}
, where
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(01)ω = 0101 · · · is a repeating periodic string. Any collection of such periodic strings
forms a subshift.

Clearly, the union of two subshifts is a subshift, and so, to classify subshifts, one
wants to find all of the indecomposable pieces, and characterize those. Factors include
periodic strings of fixed period; but not all of these are unique: so, the period-4 string
(0101)ω is really just the period-two string in disguise.

Subshifts consisting entirely of periodic strings can be characterized in terms of
Lyndon words. Lyndon words are fixed length strings that are not decomposable into
shorter sequences. Thus, each one characterizes a periodic subshift. Cyclic permuta-
tions of a Lyndon word give the same subshift; for example, both (01)ω and (10)ω

belong to the same subshift. The number of distinct, unique subshifts of length ν is
given by Moreau’s necklace counting function: it counts the number of distinct se-
quences of a given length, modulo cyclic permutations thereof.

Characterizing the subshifts that do not consist of periodic orbits is considerably
harder. For example, consider the string s = 010ω . It has an orbit: τs = 10ω and
τ2s= 0ω and so one can write down a set ⟨s⟩= {010ω ,10ω ,0ω} which has the property
that τ ⟨s⟩ ⊂ ⟨s⟩. However, it is not a subshift, because τ ⟨s⟩ ̸= ⟨s⟩. The first two points
“wander away” under the application of the shift; they are part of the “wandering set”.
What remains is the fixed point τ0ω = 0ω . The ergodic decomposition theorem states
that all such sets X having the property that τX ⊂X can be decomposed into two pieces:
X = S∪W with S a subshift, τS = S and W the wandering set or dissipative set, that
eventually dissipates into the empty set: limn→∞ τnW =∅. Subshifts are fixed-points;
everything else disappears.

Given some real number x ∈ [0,1], and it’s binary expansion x = 0.b0b1 · · · , defined
in eqn 2, what is the nature of ⟨s⟩ for s = b0b1 · · · ? That is, defining

⟨s⟩= {γ = τ
ns : n ∈ N}

what portion of ⟨s⟩ is wandering, and which part is a subshift? If x = p/q is a ra-
tional number, the answer is easy: rational numbers have binary expansions that are
eventually periodic. They consist of some finite-length prefix of non-repeating digits,
followed by an infinite-length cyclic orbit. The finite-length prefix is the wandering
set; the cyclic part is a subshift. If the period of the cyclic part is ν , then the subshift
contains precisely ν elements.

For the Bernoulli shift τx= 2x mod 1, for the real numbers, the answer is provided
by the ergodic theorem. For all real numbers x ∈ [0,1]\Q, that is, the unit interval ex-
cluding the rationals, the orbit of x is ergodic: given any real number ε > 0 and any
y ∈ [0,1] there exists some n ∈ N such that |y− τnx| < ε . Iteration takes x arbitrarily
close to any location on the unit interval. In terms of symbolic dynamics, the binary ex-
pansion of y and the binary expansion of τnx will have m = ⌊log2 ε⌋ digits in common.
The number m can be made arbitrarily large; the subsequence will occur somewhere in
the expansion. Put differently, every finite-length string γ ∈ {0,1}<ω occurs as a prefix
of (uncountably many) of the strings in ⟨x⟩.

In essence, that takes care of that, for the Bernoulli shift, at least, if one is looking
at it from the point of view of point dynamics. As long as one thinks with the mind-set
of points and their orbits, there is not much more to be said. The above is, in a sense,
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a complete description of the Bernoulli shift. But the introduction to this text gave lie
to this claim. If one instead looks at the shift in terms of it’s transfer operator acting
on distributions, then much more can be said. The spectrum of the transfer operator
is non-trivial, and the eigenfunctions are fractal, in general. This will be examined
more carefully, later; but for now, the topic of point dynamics in the Bernoulli shift is
exhausted. This is the end of the line.

The Bernoulli shift is not the only shift on Cantor space. And so, onward ho.

1.4 Beta shift
The beta shift is similar to the Bernoulli shift, replacing the number 2 by a constant
real-number value 1 < β ≤ 2. It can be defined as

Tβ (x) =

{
βx for 0 ≤ x < 1

2
β
(
x− 1

2

)
for 1

2 ≤ x ≤ 1
(4)

This map, together with similar maps, is illustrated in figure 6 below.
Just as the Bernoulli shift generates a sequence of digits, so does the beta shift:

write

kn =

{
0 if 0 ≤ T n

β
(x)< 1

2

1 if 1
2 ≤ T n

β
(x)≤ 1

(5)

Given the symbolic dynamics, one can reconstruct the original value whenever 1 < β

as

x =
k0

2
+

1
β

(
k1

2
+

1
β

(
k2

2
+

1
β

(
k3

2
+

1
β
(· · ·)

)))
Written this way, the Tβ (x) clearly acts as a shift on this sequence:

Tβ (x) =
k1

2
+

1
β

(
k2

2
+

1
β

(
k3

2
+

1
β

(
k4

2
+

1
β
(· · ·)

)))
In this sense, this shift is “exactly solvable”: the above provides a closed-form solution
for iterating and un-iterating the sequence.

Multiplying out the above sequence, one obtains the so-called “β -expansion” of a
real number x, namely the series

x =
1
2

∞

∑
n=0

kn

β n (6)

The bit-sequence that was extracted by iteration can be used to reconstruct the original
real number. Setting β = 2 in eqn 5 gives the Bernoulli shift: T2 (x) = b(x).

Unlike the Bernoulli shift, not every possible bit-sequence occurs in this system. It
is a subshift of the full shift: it is a subset of {0,1}ω that is invariant under the action
of Tβ . The structure of this shift is explored in detail in a later section.
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1.5 Associated polynomial
The iterated shift can also be written as a finite sum. A later section will be devoted
entirely to the properties of this sum. Observe that

Tβ (x) = β

(
x− k0

2

)
and that

T 2
β
(x) = β

2x− β

2
(βk0 + k1)

and that

T 3
β
(x) = β

3x− β

2
(
β

2k0 +βk1 + k2
)

The general form is then:

T p
β
(x) = β

px− β

2

p−1

∑
m=0

kmβ
p−m−1 (7)

Since the km depend on both β and on x, and are only piece-wise continuous functions,
this is not a true polynomial. It does provide a polynomial-like representation with a
range of interesting properties.

1.6 Density Visualizations
The long-term dynamics of the β -shift can be visualized by means of a bifurcation
diagram. The idea of a bifurcation diagram gained fame with the Feigenbaum map
(shown in figure 5). The same idea is applied here: track orbits over long periods of
time, and see where they go. This forms a density, which can be numerically explored
by histogramming. This is shown in figure 2.

When this is done for the β -shift, one thing becomes immediately apparent: there
are no actual “bifurcations”, no “islands of stability”, no extended period-doubling
regions, none of the stuff normally associated with the Feigenbaum map. Although
there are periodic orbits, these form a set of measure zero: the iteration produces purely
chaotic motion for almost all values of x and all values of β > 1. In this sense, the
beta transform provides a clean form of “pure chaos”,1 without the pesky “islands of
stability” popping up intermittently.

The visualization of the long-term dynamics is done by generating a histogram and
then taking the limit. The unit interval is divided into a fixed sequence of equal-sized
bins; say, a total of N bins, so that each is 1/N in width. Pick a starting x, and then
iterate: if, at the n’th iteration, one has that j/N ≤ bn

β
(x)< ( j+1)/N, then increment

the count for the j’th bin. After a total of M iterations, let c( j;M) be the count in the

1Formal mathematics distinguishes between many different kinds of chaotic number sequences: those
that are ergodic, those that are weakly or strongly Bernoulli, weakly or strongly mixing. The beta transform
is known to be ergodic,[2] weakly mixing[3] and weakly Bernoulli.[4]
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j’th bin. This count is the histogram. In the limit of a large number of iterations, as
well as small bin sizes, one obtains a distribution:

ρ(y;x) = lim
N→∞

lim
M→∞

c( j;M)

M
for

j
N

≤ y <
j+1
N

This distribution depends on the initial value x chosen for the point to be iterated; a
“nice” distribution results when one averages over all starting points:

ρ(y) =
∫ 1

0
ρ(y;x)dx

Numerically, this integration can be achieved by randomly sampling a large number of
starting points. By definition, ρ(y) is a probability distribution:

1 =
∫ 1

0
ρ(x)dx

Probability distributions are the same thing as measures; they assign a density to
each point on the unit interval. It can be shown that this particular distribution is in-
variant under iteration, and thus is often called the invariant measure, or sometimes the
Haar measure.

For each fixed β , one obtains a distinct distribution ρβ (y). The figure 1 illustrates
some of these distributions for a selection of fixed β . Note that, for β < 1, the distri-
bution is given by ρβ (y) = δ (y), a Dirac delta function, located at y = 0.

The general trend of the distributions, as a function of β , can be visualized with
a Feigenbaum-style “bifurcation diagram”, shown in figure 2. This color-codes each
distribution ρβ (y) and arranges them in a stack; a horizontal slice through the diagram
corresponds to ρβ (y) for a fixed value of β . A related visualization is in 3, which
highlights the discontinuities in 2. Periodic orbits appear wherever the traceries in this
image intersect. A characterization of these orbits occupies a large portion of this text.

1.7 Tent Map
The tent map is a closely related iterated map, given by iteration of the function

vβ (x) =

{
βx for 0 ≤ x < 1

2
β (1− x) for 1

2 ≤ x ≤ 1

Its similar to the beta shift, except that the second arm is reflected backwards, forming
a tent. The bifurcation diagram is shown in figure 4. Its is worth contemplating the
similarities between this, and the corresponding beta shift diagram. Clearly, there are a
number of shared features.

1.8 Logistic Map
The logistic map is related to the tent map, and is given by iteration of the function

fβ (x) = 2βx(1− x)
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Figure 1: Beta-shift Density Distribution
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The above figure shows three different density distributions, for ρ1.2(y), ρ1.6(y) and
ρ1.8(y), calculated numerically. These are obtained by histogramming a large number
of point trajectories, as described in the text. The small quantities of jitter are due to a
finite number of samples. To generate this figure, a total of M = 4000 iterations were
performed, using randomly generated arbitrary-precision floats (using the Gnu GMP
package), partitioned into N = 800 bins, and sampled 24000 times (or 30 times per
bin) to perform the averaging integral. It will later be seen that the discontinuities in
this graph occur at the “iterated midpoints” mp = T p

β
(β/2). The flat plateaus are not

quite flat, but are filled with microscopic steps. There is a discontinuous step at every
p; these are ergodically distributed, i.e. dense in the interval, so that there are steps
everywhere. This is the general case; for special cases, when the midpoint has a finite
orbit, then there are a finite number of perfectly flat plateaus. The first such example
occurs at β =

(
1+

√
5
)
/2 = ϕ the Golden Ratio. In this case, there are only two such

plateaus.
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Figure 2: Beta-shift Bifurcation Diagram

This figure shows the density ρβ (y), rendered in color. The constant β is varied from 1
at the bottom to 2 at the top; whereas y runs from 0 on the left to 1 on the right. Thus, a
fixed value of β corresponds to a horizontal slice through the diagram. The color green
represents values of ρβ (y) ≈ 0.5, while red represents ρβ (y) ≳ 1 and blue-to-black
represents ρβ (y)> 0.25. The lines forming the fan shape are not actually straight, they
only seem to be; in fact, they have a slight curve. The form will be provided in a later
section, it is a variant of the polynomail in eqn 7. The discontinuities in this figure are
more clearly highlighted in the next figure, 3.
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Figure 3: Midpoint Trace

Traces of midpoint iteration. Each horizontal line corresponds to a fixed β , with β

running fom 1 at the bottom, to 2 at the top. At each fixed β , the midpoint x = 1/2 is
iterated to generate T n

β
(1/2). At each such location (from left to right, of 0 to 1), the

corresponding pixel is given a color assignment, fading from red, through a rainbow, to
black, as n increases. This is a variant of 2, highlighting the edges. A formal analysis
of the traceries begins with figure 28
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Figure 4: Tent Map Bifurcation Diagram

The bifurcation diagram for the tent map. The value of β runs from 1 at the bottom
of the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Note that
this is a different color scheme than that used in figure 2; that scheme would obliterate
the lower half of this figure in red.
The black areas represent parts of the iterated range that are visited at most a finite
number of times. To the right, the straight boundary indicates that after one iteration,
points in the domain β/2 ≤ x ≤ 1 are never visited. To the left, points in the domain
0 ≤ x ≤ β (1−β/2) are never visited more than a finite number of times.
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Figure 5: Logistic Map Bifurcation Diagram

The logistic map bifurcation diagram. The value of β runs from 1.75 at the bottom of
the image, to 2 at the top. The color scheme is adjusted so that green represents the
average value of the distribution, red represents areas of more than double the average
value, while blue shows those values that are about half the average value. Clearly, the
orbits of the iterated points spend much of their time near the edges of the diagram.
This is a very widely reproduced diagram. The goal here is not to waste space repro-
ducing it yet again, but to draw attention to the similarities between this diagram, and
the the corresponding diagram for the beta shift.

It essentially replaces the triangle forming the tent map with a parabola of the same
height. That is, the function is defined here so that the the same value of β corresponds
to the same height for all three maps. Although the heights of the iterators have been
aligned so that they match, each exhibits rather dramatically different dynamics. The
β -transform has a single fixed point for β < 1, and then explodes into a fully chaotic
regime above that. By contrast, the logistic map maintains a single fixed point up to
β = 3/2, where it famously starts a series of period-doubling bifurcations. The onset
of chaos is where the bifurcations come to a limit, at β = 3.56995/2 = 1.784975.
Within this chaotic region are “islands of stability”, which do not appear in either the
β -transform, or in the tent map. The tent map does show a period-doubling regime,
but in this region, there are no fixed points: rather, the motion is chaotic, but confined
to multiple arms. At any rate, the period doubling occurs at different values of β than
for the logistic map.

The bifurcation diagram is shown in figure 5. Again, it is worth closely examining
the similarities between this, and the corresponding tent-map diagram, as well as the
β -transform diagram. Naively, it would seem that the general structure of the chaotic
regions are shared by all three maps. Thus, in order to understand chaos in the logistic
map, it is perhaps easier to study it in the β -transform.

The general visual similarity between the figures 2, 4 and 5 should be apparent,
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and one can pick out and find visually similar regions among these three illustrations.
Formalizing this similarity is a bit harder, but it can be done: all three of these maps
are topologically conjugate to one-another. This is perhaps surprising, but is based
on the observation that the “islands of stability” in the logistic map are countable,
and are in one-to-one correspondence with certain “trouble points” in the iterated beta
transformation. These are in turn in one-to-one correspondence with rational numbers.
With a slight distortion of the beta transformation, the “trouble points” can be mapped
to the islands of stability, in essentially the same way that phase locking regions (Arnold
tongues) appear in the circle map. This is examined in a later section; it is mentioned
here only to whet the appetite.

1.9 Beta Transformation
After exactly one iteration of the beta shift, all initial points β/2 ≤ x ≤ 1 are swept
up into the domain 0 ≤ x < β/2, and never leave. Likewise, the range of the iterated
beta-shift is 0 ≤ x < β/2. Thus, an alternative representation of the beta shift, filling
the entire unit square, can be obtained by dividing both the domain and range by β/2
to obtain the function

tβ (u) =

{
βu for 0 ≤ u < 1

β

βu−1 for 1
β
≤ u ≤ 1

(8)

This can be written more compactly as tβ (x) = βx mod 1. In this form, the function is
named “the beta-transform”, written as the β -transformation, presenting a typesetting
challenge to search engines when used in titles of papers. The orbit of a point x in
the beta-shift is identical to the orbit of a point u = 2x/β in the beta-transformation.
Explicitly comparing to the beta-shift of eqn 4:

T n
β
(x) =

β

2
tn
β

(
2x
β

)
(9)

The beta-shift and the β -transformation are essentially the same function; this text
works almost exclusively with the beta-shift, and is thus idiosyncratic, as it flouts the
more common convention of working with the β -transformation. The primary reason
for this is a historical quirk, as this text was started before the author became aware of
the β -transformation.

After a single iteration of the tent map, a similar situation applies. After one iter-
ation, all initial points β/2 ≤ x ≤ 1 are swept up into the domain 0 ≤ x < β/2. After
a finite number of iterations, all points 0 < x ≤ β (1−β/2) are swept up, so that the
remaining iteration takes place on the domain β (1−β/2)< x< β/2. It is worth defin-
ing a “sidetent” function, which corresponds to the that part of the tent map in which
iteration is confined. It is nothing more than a rescaling of the tent map, ignoring those
parts outside of the above domain that wander away. The sidetent is given by

sβ (u) =

{
β (u−1)+2 for 0 ≤ u < β−1

β

β (1−u) for β−1
β

≤ u ≤ 1
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Performing a left-right flip on the side-tent brings it closer in form to the beta-transformation.
The flipped version, replacing u → 1−u is

fβ (u) =

{
βu for 0 ≤ u < 1

β

2−βu for 1
β
≤ u ≤ 1

The tent map (and the flipped tent) exhibits fixed points (periodic orbits; mode-
locking) for the smaller values of β . These can be eliminated by shifting part of the
tent downwards, so that the diagonal is never intersected. This suggests the “sidetarp”:

aβ (u) =

{
βu for 0 ≤ u < 1

β

β (1−u) for 1
β
≤ u ≤ 1

The six different maps under consideration here are depicted in figure 6. It is interesting
to compare three of the bifurcation diagrams, side-by-side. These are shown in figure
7.

1.10 Dynamical Systems
A brief review of dynamical systems is in order, as it provides a coherent language
with which to talk about and think about the beta-shift. The technical reason for this
is that a subshift S ⊂ {0,1}ω provides a more natural setting for the theory, and that
a lot of the confusion about what happens on the unit interval is intimately entangled
with the homomorphism 3 (or 6 as the case may be). Disentangling the subshift from
the homomorphism provides a clearer insight into what phenomena are due to which
component.

The review of dynamical systems here is more-or-less textbook-standard material;
it is included here only to provide a firm grounding for later discussion.

The Cantor space {0,1}ω can be given a topology, the product topology. The open
sets of this topology are called “cylinder sets”. These are the infinite strings in three
symbols: a finite number of 0 and 1 symbols, and an infinite number of * symbols,
the latter meaning “don’t care”. Set union is defined location-by-location, with 0∪∗=
1∪∗= ∗ and set intersection as 0∩∗= 0 and 1∩∗= 1. Set complement exchanges 0
and 1 and leaves * alone: 0 = 1, 1 = 0 and ∗ = ∗. The topology is then the collection
of all cylinder sets. Note that the intersection of any finite number of cylinder sets is
still a cylinder set, as is the union of an infinite number of them. The product topology
does not contain any “points”: strings consisting solely of just 0 and 1 are not allowed
in the topology. By definition, topologies only allow finite intersections, and thus don’t
provide any way of constructing “points”. Of course, points can always be added “by
hand”, but doing so tends to generate a topology (the “box topology”) that is “too
fine”; in particular, the common-sense notions of a continuous function are ruined by
fine topologies. The product topology is “coarse”.

The Borel algebra, or sigma-algebra, takes the topology and also allows set com-
plement. This effectively changes nothing, as the open sets are still the cylinder sets,
although now they are “clopen”, as they are both closed and open.
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Figure 6: Iterated piece-wise linear maps

The beta shift map, shown in the upper left, generates orbits that spend all of their time
in the shaded area: a box of size β

2 × β

2 . Enlarging this box to the unit square gives
the β -transformation. The tent map resembles the beta shift, except that one arm is
flipped to make a tent-shape. After a finite number of iterations, orbits move entirely
in the shaded region; enlarging this region to be the unit square gives the sidetent map.
Flipping it left-right gives the fliptent map. Although it is not trivially obvious, the
fliptent map and the sidetent map have the same orbits, and thus the same bifurcation
diagram.

The bottom three maps all have prominent fixed points and periodic orbits, es-
sentially because the diagonal intersects the map. The top three maps have periodic
orbits, but these occur only for a countable number of β values. General orbits are
purely chaotic, essentially because the diagonal does not intersect them. Note that the
slopes and the geometric proportions of all six maps are identical; they are merely
rearrangents of the same basic elements.
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Figure 7: Beta transform and Side-tent

The left figure shows the bifurcation diagram for the β -transform, as it is normally
defined as the βx mod 1 map. It is the same map as the beta shift, just rescaled to
occupy the entire unit square. In all other respects, it is identical to 2.

The middle figure is a similarly-rescaled tent map, given the name “side tent”
in the main text. It is essentially identical to 4, with the middle parts expanded and
the sides removed. In both figures, β runs from 1 at the bottom to 2 at the top. The
right-hand-side figure is the “sidetarp”, clearly its an oddly-folded variant of the beta
transform.

Denote the Borel algebra by B. A shift is now a map T : B → B that lops off the
leading symbol of a given cylinder set. This is provides strong theoretical advantages
over working with “point dynamics”: confusions about counting points and orbits and
defining densities go away. This is done by recasting discussion in terms of functions
f : B →R from Borel sets to the reals (or the complex numbers C or other fields, when
this is interesting). An important class of such functions are the measures. These are
functions µ : B →R that are positive, and are “compatible” with the sigma algebra, in
that µ (A∪B) = µ (A)+µ (B) whenever A∩B = ∅ and (for product-space measures)
that µ (A∩B) = µ (A)µ (B) for all A,B ∈ B. The measure of the total space Ω =
{0,1}ω is by convention unity: µ (Ω) = 1.

The prototypical example of a measure is the Bernoulli measure, which assigns
probability p to any string containing a single 0 and the rest all *’s. By complement, a
string containing a single 1 and the rest all *’s has probability 1− p. The rest follows
from the sigma algebra: a cylinder set consisting of m zeros and n ones has measure
pm (1− p)n. It is usually convenient to take p = 1/2, the “fair coin”; the Bernoulli
process is a sequence of coin tosses.

The map given in equation 3 is a homomorphism from the Cantor space to the
unit interval. It extends naturally to a map from the Borel algebra B to the algebra
of intervals on the unit interval. It is not an isomorphism: cylinder sets are both open
and closed, whereas intervals on the real number line are either open, or closed (or
half-open). It is convenient to take the map as a map to closed intervals, so that it’s
a surjection onto the reals, although usually, this detail does not matter. What does
matter is if one takes p = 1/2, then the Bernoulli measure is preserved: it is mapped
onto the conventional measure on the real-number line. Thus, the cylinder set 0∗∗∗· · ·
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is mapped to the interval [0,1/2] and 1 ∗ ∗ ∗ · · · is mapped to [1/2,1] and both have a
measure of 1/2 and this extends likewise to all intersections and unions. Points have
a measure of zero. That is, the homomorphism 3 preserves the fair-coin Bernoulli
measure.

Much of what is said above still holds for subshifts. Recall, a subshift S is a sub-
space S ⊂ {0,1}ω that is invariant under the shift T , so that T S = S. The space S
inherits a topology from {0,1}ω ; this is the subspace topology. The Borel algebra B
is similarly defined, as are measures. One can now (finally!) give a precise definition
for an invariant measure: it is a measure µ such that µ ◦T−1 = µ , or more precisely,
for which µ

(
T−1 (σ)

)
= µ (σ) for almost all cylinder sets σ ∈ S. This is what shift

invariance looks like. Note carefully that T−1 and not T is used in the definition. This
is because T−1 is a surjection while T is not: every cylinder set σ in the subshift “came
from somewhere”; we want to define invariance for all σ and not just for some of them.

The T−1 is technically called a “pushforward”, and it defines a linear operator
LT on the space F of all functions f : B → R. It is defined as LT : F → F by
setting LT : f 7→ f ◦ T−1. It is obviously linear, in that LT (a f +bg) = aLT ( f )+
bLT (g). This pushforward is canonically called the “transfer operator” or the “Ruelle-
Frobenius-Perron operator”. Like any linear operator, it has a spectrum. The precise
spectrum depends on the space F .

The canonical example is again the Bernoulli shift. For this, we invoke the inverse
of the mapping of eqn 3 so that f : [0,1] → R is a function defined on the unit inter-
val, instead of f : B → R. When F is the space of real-analytic functions on the unit
interval, that is, the closure of the space of all polynomials in x ∈ [0,1], then the spec-
trum of LT is discrete. It consists of the Bernoulli polynomials Bn (x) corresponding
to an eigenvalue of 2−n. That is,LT Bn = 2−nBn. Note that B0 (x) = 1 is the invariant
measure on the full shift. For the space of square-integrable functions f : [0,1]→ R,
the spectrum of LT is continuous, and consists of the unit disk in the complex plane;
the corresponding eigenfunctions are fractal. Even more interesting constructions are
possible; the Minkowski question mark function provides an example of a measure on
{0,1}ω that is invariant under the shift defined by the Gauss map h(x) 7→ 1

x −
⌊ 1

x

⌋
. That

is, as a measure, it solves LT ?′ =?′ with ? the Minkowski question mark function, and
?′ it’s derivative; note that the derivative is “continuous nowhere”. This rather confus-
ing idea (of something being “continuous nowhere”) can be completely dispelled by
observing that it is well-defined on all cylinder sets in B and is finite on all of them –
not only finite, but less than one, as any good measure must obey.

These last examples are mentioned so as to reinforce the idea that working with B
instead of the unit interval [0,1] really does offer some strong conceptual advantages.
They also reinforce the idea that the Bernoulli shift is not the only “full shift”. In the
following text, we will be working with subshifts, primarily the beta-shift, but will
draw on ideas from the above so as to make rigorous statements about measurability
and invariance, without having to descend into either ad hoc hand-waving or provide
painfully difficult (and confusing) reasoning about subsets of the real-number line.
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1.11 Beta Transformation Literature Review and References
The β -transformation, in the form of tβ (x) = βx mod 1 has been well-studied over the
decades. The beta-expansion 5 was introduced by A. Renyi[2] in 1957, who demon-
strates the existence of the invariant measure. The ergodic properties of the transform
were proven by W. Parry[3] in 1960, who also shows that the system is weakly mixing.

An explicit expression for the invariant measure was obtained independently by
A.O. Gel’fond[5] in 1959, and by W. Parry[3], as a summation of step functions

νβ (y) =
1
F

∞

∑
n=0

εn (y)
β n (10)

where εn is the digit sequence

εn (y) =

{
1 if y < tn

β
(1)

0 otherwise
(11)

and F is a normalization constant. By integrating εn (y) under the sum, the normaliza-
tion is given by

F =
∞

∑
n=0

tn
β
(1)

β n

Analogous to the way in which a dyadic rational p/2n has two different binary
expansions, one ending in all-zeros, and a second ending in all-ones, so one may also
ask if and when a real number x might have more than one β -expansion (for fixed
β ). In general, it can; N. Sidorov shows that almost every number has a continuum of
such expansions![6] This signals that the beta shift behaves rather differently from the
Cantor set in it’s embedding.

Conversely, the “univoke numbers” are those values of β for which there is only
one, unique expansion for x = 1. These are studied by De Vries.[7]

The β -transformation has been shown to have the same ergodicity properties as
the Bernoulli shift.[4] The fact that the beta shift, and its subshifts are all ergodic is
established by Climenhaga and Thompson.[8]

An alternative to the notion of ergodicity is the notion of universality: a β -expansion
is universal if, for any given finite string of bits, that finite string occurs somewhere in
the expansion. This variant of universality was introduced by Erdös and Komornik[9].
Its is shown by N. Sidorov that almost every β -expansion is universal.[10] Conversely,
there are some values of β for which rational numbers have purely periodic β -expansions;[11]
all such numbers are Pisot numbers.[12]

The symbolic dynamics of the beta-transformation was analyzed by F. Blanchard[13].
A characterization of the periodic points are given by Bruno Maia[14]. A discussion
of various open problems with respect to the beta expansion is given by Akiyama.[15]

When the beta expansion is expanded to the entire real-number line, one effectively
has a representation of reals in a non-integer base. One may ask about arithmetic prop-
erties, such as the behavior of addition and multiplication, in this base - for example, the
sum or product of two β -integers may have a fractional part! Bounds on the lengths of
these fractional parts, and related topics, are explored by multiple authors.[16, 17, 18]
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Certain values of β – generally, the Pisot numbers, generate fractal tilings,[19, 20,
21, 11, 15] which are generalizations of the Rauzy fractal. An overview, with common
terminology and definitions is provided by Akiyama.[22] The tilings, sometimes called
(generalized) Rauzy fractals, can be thought of as living in a direct product of Euclidean
and p-adic spaces.[23]

The set of finite beta-expansions constitutes a language, in the formal sense of
model theory and computer science. This language is recursive (that is, decidable by a
Turing machine), if and only if β is a computable real number.[24]

The zeta function, and a lap-counting function, are given by Lagarias[25]. The
Hausdorff dimension, the topological entropy and general notions of topological pres-
sure arising from conditional variational principles is given by Daniel Thompson[26].
A proper background on this topic is given by Barreira and Saussol[27].

None of the topics or results cited above are made use of, or further expanded on,
or even touched on in the following. This is not intentional, but rather a by-product of
different goals.

1.12 Glossary
A collection of basic definitions. Almost none of these are actually needed or used in
the text that follows. However, they do provide context for the overall project. This are
cribbed from multiple sources, including [28]

1.12.1 Dynamical systems

Basic definitions.

• A map T : X → X is strongly transitive if for every open set U ⊂ X ,
⋃

∞
n=1 T nU =

X .

1.12.2 Subshifts of finite type

Basic definitions.

• Let τ : ΣZ → ΣZ be a shift, where Σ a set of N distinct elements (the alphabet). A
subshift or shift space is a subset Λ ⊂ ΣZ that is compact and invariant under the
action of τ . Here, compact means that it is closed under the product topology.

• A finite string of symbols d1d2 · · ·dk ∈ Σ∗ is called a block. Let F be a set of
blocks. Define ΛF ⊂ NZ as the set of strings that do not contain any block in
F at any location. Then ΛF is a subshift. A subset Λ ⊂ NZ is a subshift if and
only if there is some set F such that Λ = ΛF . The elements of F are called
forbidden blocks.

• A subshift is of finite type (SFT) if F is finite. A subshift is k-step if F ⊂ Σk+1

and k is the smallest integer that gives Λ = ΛF . A 1-step SFT is a topological
Markov chain (TMC). All SFT’s (of any k) can be recoded to a TMC; that is,
they are conjugate to a TMC, with “recoding” and “conjugate” defined below.
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• Given a shift space Λ, define the ball Bk (Λ) as the set of all blocks of length k in
Λ. The language of Λ is B(Λ) =

⋃
∞
k=1 Bk (Λ).

• A finite block code is a map Φ : Bk (Λ)→ Σ′ mapping blocks of length k to some
other alphabet Σ′. If k = 1, it is called a 1-block map.

• A sliding block code is is a continuous map φ : Λ → Λ′ between shift spaces
Λ,Λ′, built from alphabets Σ,Σ′, that commutes with the shift, so that φ ◦ τ =
τ ◦φ .

• The Curtis–Lyndon–Hedlund theorem states that all sliding block codes are gen-
erated by finite block codes. That is, given φ there exists an integer k and a finite
block code Φ such that [φ (x)]i = Φ(xixi+1 · · ·xk) where xm is the m’th digit in
x ∈ Λ and [φ (x)]i is the i’th digit in φ (x). See [28]

• If a sliding block code is a bijection, then it is called a conjugacy. If it is a
surjection, then it is called a factor map or a factor code.

• Combining the above gives an alternate definition for an SFT. A subshift is of
finite type if there exists directed graph G having N vertices, such that the only
transitions between successive digits in the subshift correspond to edges in the
graph. That is, for x∈Λ having a digit expansion · · ·dk−1dkdk+1 · · · the only digit
transitions dkdk+1 are those that correspond to a (directed) edge in the graph.
Every such graph has a corresponding N ×N adjacency matrix A with entries
Ai j = 1 if there is an edge E : i 7→ j and zero otherwise. The adjacency matrix
can be thought of as a Markov chain, and so subshifts of finite type earn the name
of “topological Markov chain”.

• Let G = (V,E) be an undirected graph. Let A ⊂ V . The boundary of A is
∂A = {v ∈V\A : (a,v) ∈ E,a ∈ A}. For directed graphs, we have the incom-
ing and outgoing boundaries. Boundaries define nearest-neighbors, and are used
to define interaction potentials for constructing Gibbs measures.

1.12.3 Sofic systems

Basic definitions

• A sofic shift is a factor map of an SFT. By recoding to a TMC, all sofic shifts are
1-block factor maps of TMC’s. The graph definition of TMC’s above implicitly
assumed each vertex label was distinct. A sofic shift maps some of these labels
in a way that they are no longer distinct.

• Sofic shifts correspond to regular languages. This follows immediately from the
definition in terms of a graph.

• Given a word w∈B(Λ), the follower set of w is F (w)= {u ∈ B(Λ) : wu ∈ B(Λ)}.
The set of follower sets is F (Λ) = {F (w) : w ∈ B(Λ)}. A shift space is sofic if
and only if F (Λ) is finite. The predecessor set P(w) is defined analogously; a
shift space is sofic iff P(Λ) is finite.
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• If Λ is sofic, then Λ has dense periodic points. If Λ has dense periodic points,
then Λ is non-wandering. See Chandgotia.[28]

1.12.4 Topological Markov fields

Topological Markov fields (TMF) are explored in Chandgotia.[28] TMF’s are interest-
ing because they sit “in between” SFT’s and sofic systems: every TMF is sofic; not all
sofic systems are TMF. Also, there are TMF’s that are not SFT’s.

• A topological Markov field (TMF) is a shift space Λ for which, given two letters
a,b ∈ Σ and two words u,v of the same length |u| = |v|, then for two strings
aub ∈ B(Λ) and xavby ∈ B(Λ) then xauby ∈ B(Λ). This is a 1-step TMF; a
k-step TMF replaces a,b by length-k strings.

• A shift space Λ is a TMF if and only if, for all x,y ∈ Λ and all finite cylinders
C ⊂ Z such that x = y on ∂C, the point z ∈ ΣZ given by

z =

{
x on C∪∂C
y on (C∪∂C)c

is also z ∈Λ. Here, ∂C is the set of integers in Z\C that are immediately adjacent
to elements of C.

1.12.5 Measures

A measure is a function µ : Λ → R+ satisfying the usual sigma-additivity axioms on
the Borel set. Some additional definitions follow.

• A cylinder set is a finite subset of the integers C ⊂ Z and a map c : C → Σ. The
cylinder sets provide the the base of open sets for the topology; together with
complementation, this gives the Borel sets.

• A measure is stationary if it is shift-invariant, i.e. if µ ◦ τ−1 = µ .

• A shift space Λ is non-wandering if ∀u ∈ B(Λ) ∃v ∈ B(Λ) s.t. uvu ∈ B(Λ).

• The support of a measure is the (closed, compact) subspace of Λ from which all
cylinder sets of zero measure have been removed.

• The support of any stationary measure is non-wandering.

1.12.6 Markov measures

Markov measures are stationary; general Markov random fields are not. Again Chandgotia[28]
provides gruesome details. Stationary MRF’s are Markov chains. Markov chains are
Gibbs measures, where Gibbs measures are given by nearest-neighbor interaction po-
tentials. The equivalence is more-or-less due to the boundary conditions, which are
nearest-neighbor conditions.
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• A conditional measure takes the form µ (C|D) where C,D are cylinder sets. That
is, the measure of C is conditionally dependent on D.

• A Markov chain is a conditional measure of the form µ (d1d2 · · ·dn|d0) where
d1d2 · · ·dn are the digits of a contiguous cylinder set. That is, the measure for a
Markov chain depends only on the previous digit (and the cylinder that follows)
(and there is no other dependency.)

• The support of a Markov chain is exactly a TMC.

• A Markov random field (MRF) is a conditional measure of the form µ (d1d2 · · ·dn|d0,dn+1)
and so the measure depends on both the preceding and the following digit. A kind
of two-sided Markov chain.

• The support of a stationary MRF is exactly a TMF.

1.12.7 Entropy

Basic definitions.

• A finite partition P = {P1, · · · ,Pn} of a space X is a collection of subsets Pk ⊂ X
such that they are pairwise disjoint, up to measure zero: µ (Pi ∩Pj) = 0 for i ̸= j,
and that X =

⋃
k Pk mod µ . That is, µ (

⋃
k Pk) = 1.

• The entropy of a partition P is H (P) =−∑k µ (Pk) ln µ (Pk).

• The measure-theoretic entropy hµ (τ,P) of a shift τ w.r.t. P is

hµ (τ,P) = lim
n→∞

1
n

H
(
P ∨·· ·∨ τ

−n+1P
)

where P ∨·· ·∨ τ−n+1P is a partition of X generated by τ by shifting P .

• The metric (or measure-theoretic) entropy hµ (τ) of a shift τ is the supremum of
hµ (τ,P) over all finite measurable partitions P .

1.12.8 Equilibria

Equilibrium measures.

• Given a continuous function φ : Λ → R, the “equilibrium measure” (or “equi-
librium state”) is defined as the shift-invariant measure µ that maximizes E =
hτ (µ)+

∫
Λ

φdµ . (Is this is the Gibbs free energy? The sign seems wrong. The
Gibbs measure?) Here hτ (µ) is the measure-theoretic entropy of τ w.r.t. µ .
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1.13 Other factoids
Other random factoids and definitions that are interesting or useful.

• The topological entropy of of the β -shift is logβ .

• Every strongly transitive piece-wise monotonic map on the unit interval is topo-
logically conjugate to a β -transfomation.

• A β -shift is of finite type if and only if the β -expansion of 1 is finite.

• A β -shift is sofic if and only if the β -expansion of 1 is eventually periodic.

• If β is a Pisot–Vijayaragavhan number, then the β -shift is sofic. A Pisot–Vijayaragavhan
number is an algebraic integer all of whose conjugates have modulus less than 1.

• If a β -shift is sofic then β is a Perron number. (We already see this numerically.)

Anything more?
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2 Symbolic Dynamics
A brief review of the Cantor set is in order.

The Bernoulli shift corresponds to the sequence of binary digits of a real number.
Such sequences can be imagined to belong to the space of all possible sequences of
binary digits, the Cartesian product of infinitely many copies of the set containing two
elements:

{0,1}×{0,1}×{0,1}× ·· ·= {0,1}ω = 2ω

This set is the Cantor set. It has a natural topology, the product topology, whose open
sets are finite lengths of digits, possibly interspersed with some “don’t care” markers
(“don’t care” meaning ”either 0 or 1”), and terminated by an infinite tail of “don’t
care” markers. Equation 3 provides a homomorphism from the Cantor set to the unit
interval. There are other homomorphisms into a broad variety of fractals. Essentially
all of the strange phenomena of fractals and of iterated functions follows from the
product topology on this sequence.

The self-similarity of many kinds of fractals can be described with the Cantor set.
This arises from the self-similarity of the product space under the action of a shift:
specifically, the left-shift, which discards the left-most digit, and shifts the rest over
by one. The shift operator itself is that operator that performs this shift; self-similar
fractals can be seen to be eigenstates of the shift operator.

The infinitely-deep binary tree is another manifestation of the Cantor set. The set
{0,1} of the product space can be interpreted as the set {L,R} of left-right moves. At
each point in a binary sequence, one can make a choice of one of two things: to move
left or right. This naturally suggests a binary decision tree.

A byproduct is the presence of some implicit, ambient hyperbolic space. The infi-
nite binary tree, when drawn on flat two-dimensional space, simply “runs out of room”,
as each subsequent branching pushes closer together. The infinite binary tree can be
embedded in the simplest hyperbolic space, the Poincaré disk or upper-half-plane, in
such a way that the distance, the spacing between two neighboring nodes is always
the same. Visually, this takes the form of some prototypical M.C. Escher drawing, of
a repeated fractal form moving out to the edge of a disk. This makes the self-similar
shape of the infinite binary tree manifest: as one moves from one location to another,
one always sees “the same thing” in all directions: the space is homogeneous.

The rational numbers play a very special role in the infinite binary tree. Dyadic
rationals, of the form (2p+1)/2n for integers p and n correspond to bit sequences
(eqn 2) that terminate in all-zeros after a finite number of moves. That is, after an
initial “chaotic” sequence, they settle down to a fixed point of period one. General
rational numbers p/q behave similarly, in that after an initial “chaotic” sequence, they
settle down to periodic orbits of some fixed period. The bit-sequence becomes cyclic.
This cyclic behavior implies that most of classical number theory can be dragged into
the proceedings. Any particular statement that classical number theory makes with
regard to rational numbers, or even modular forms, can be promptly ported over to a
statement about the bit-sequences and the orbits of the Bernoulli shift, usually taking
on a strange and unrecognizable form.

All of these things go together, like hand in glove: whenever one is manifest and
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visible, the others are lurking right nearby, in the unseen directions. All of these things
can be given a formal and precise definition, and their explicit interrelationships artic-
ulated. This has been done by a wide variety of authors over the last four decades; a
proper bibliography would be overwhelming. I have written extensively on all of thee
topics, trying to present them in the simplest, most jargon-free way that I can, in a dozen
different texts available wherever you found this one. The ideas will not be repeated
here; they are not immediately useful to the current proceedings. Nonetheless, the gen-
eral interplay between all of these concepts is extremely important to understand, and
burbles constantly under the surface of the current proceedings. In essence, shifts and
subshifts are interesting precisely because they touch on so any different topics; and,
conversely, so many different areas of mathematics can inform the subshift.

2.1 Symbolic Dynamics
Given that iteration can generate strings of binary digits, and that these can be reassem-
bled back into real numbers, it is interesting to ask what those mappings look like. To
firm up the notation, let B = (bn) = (b0,b1,, · · ·) denote a sequence of bits (or symbols)
and write

xβ (B) =
1
2

∞

∑
n=0

bn

β n (12)

as the real number generated from that sequence. Conversely, given a real number x,
let Kβ (x) =

(
kn;β (x)

)
denote the sequence of bits obtained by iterating the beta shift

on x with constant β ; that is, the sequence generated by eqn. 5. The bit sequence for
K2 (x) is just the bit sequence (bn (x)) generated by eqn 2. The transformations between
symbol sequences and real numbers make sense only when 1 < β ≤ 2.

Two interesting functions can be considered. One is the compressor

cprβ (y) = x2
(
Kβ (y)

)
and the other is the expander

pdrβ (y) = xβ (K2 (y)) (13)

The terms “compressor” and “expander” are being invented here to indicate negative
and positive Lyapunov exponents associated with the two functions. For almost all y,
the compressor function is pushing nearby points closer together; the total measure of
the range of the compressor function is less than one. Likewise, for almost all y, the
expander function is pushing nearby points apart. These two functions are illustrated
in figures 8 and 9.

The two functions are adjoint; specifically, one has that pdrβ

(
cprβ (y)

)
= y for

almost all y but that cprβ

(
pdrβ (y)

)
̸= y. The former relation is equivalent to eqn. 6.

Not all possible sequences of bit strings appear in the beta shift sequence Kβ (x); that
is, this function is not a surjection onto {0,1}ω . This manifests itself as the gaps in the
range of the compressor function, clearly visible in figure 8. If a sequence of bits is
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Figure 8: Compressor Function
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This illustrates the compressor function for various values of β . Some caution is
advised in interpreting the curves at β = 1.2 and less. These curves appear to have
plateaus; this is a visual artifact only. They are sloped, much as for larger betas, just
at a microscopic scale. Each curve can be thought of as a remapping of the Cantor
set: each discontinuity is a “middle third” step. The image consists of an uncountable
collection of disjoint perfect sets.

Figure 9: Expander Function
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This illustrates the expander function for various values of β . As should be clear,
almost all neighboring input values are mapped to wildly different output values.
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viewed as a sequence of left-right moves walking down a binary tree, this implies that
some branches of the tree are never taken, and can be pruned. Only branches on the
right are ever pruned: That is, there can be arbitrarily long sequences of zeros in the
expansion, but the longest possible sequence of 1’s is always bounded. The longest run
of 1’s possible is the largest value of n that satisfies

2 ≥ 1+β +β 2 + · · ·β n−1

β n−1

Solving, the bound is

n = 1+
⌊
− log(2−β )

logβ

⌋
(14)

That is, every n’th right branch is pruned from the binary tree. For example, a run
of three 1’s in a row is possible only for β ≥

(
1+

√
5
)
/2 = 1.618034 · · · the Golden

Ratio. The range of cprβ (y) is most of, but not all of the Cantor set. The figure 10
visualizes the range of the compressor as a function of β .

2.2 Shifts with holes
Viewed as a shift space, as opposed to a cut-down binary tree, the trimming can be
thought of as a punching of holes into the full shift. This requires a bit of mental gym-
nastics. Let (a,c) be an (open) interval on the real number line: (a,c) = {x |a < x < c}.
Given the Bernoulli shift b(x) = T2 (x) from eqns 1 or 4, consider the set

I (a,c) = {x |bn (x) /∈ (a,c) for any n ≥ 0}

That is, as one iterates on some fixed x, one requests that no iterate bn (x) ever lands
in the interval (a,c). In essence, one has punched a hole in the unit interval; this
corresponds to a “hole” in the full Bernoulli shift. The set I (a,c) is what remains
after punching such a hole.

How can this be visualized? Considering the case n = 0, its clear that I (a,c)
cannot contain (a,c). That is, I (a,c)∩ (a,c) = /0. For n = 1, the interval (a,c) can
come from one of two places: either from

( a
2 ,

c
2

)
or from

( a+1
2 , c+1

2

)
, and so neither

of these can be in I (a,c). Continuing, for n = 2, the intervals
( a

4 ,
c
4

)
,
( a+1

4 , c+1
4

)
,( a+2

4 , c+2
4

)
and

( a+3
4 , c+3

4

)
must also be gone. Continuing in this fashion, one proceeds

with an infinite hole-punch: to obtain I (a,c), one just cuts out (a,c) and everything
that iterates to (a,c). For the holes, write

H (a,c) =
∞⋃

n=0

2n−1⋃
k=0

(
a+ k

2n ,
c+ k

2n

)
and for the interval with the holes punched out:

I (a,c) = [0,1]\H (a,c)

where
⋃

denotes set-union and \ denotes set subtraction. It is not hard to see that,
in the end, this forms a contorted Cantor set, using the standard midpoint-subtraction
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Figure 10: Range of the compressor

This figure illustrates a color coded visualization of the range of the compressor func-
tion. As before β varies from 0 at the bottom to 2 at the top, and y varies from 0 on
the left to 1 on the right. In general, the compressor function maps intervals of the
real number line to single points; the color corresponds to the size (the measure) of the
intervals that were mapped to that particular point. Blue corresponds to a compression
of the measure by about 1, green to a compression of about 2-3, and yellow-red to a
compression greater than that.
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algorithm, but with different endpoints. The canonical Cantor set is built by taking
(a,c) =

( 1
3 ,

2
3

)
.

Note that both H (a,c) and I (a,c) are subshifts: applying the left-shift to them
just returns the same set again. Bot are invariant under the action of the shift operator.
In formulas,

bH (a,c) = H (a,c)

and
bI (a,c) = I (a,c)

where, for notational simplicity, the parenthesis are not written, so that for the set S,
write bS = b(S). As shifts, its more appropriate to view both as sets of bit-sequences,
so that the proper relationship between one and the other should have been written as

I (a,c) = {0,1}ω \H (a,c)

How should these subshifts be visualized as strings? Let (bn (x)) be the bit sequence
generated by x, for some a < x < c. The cut operation states that such strings can never
occur anywhere in I (a,c). Explicitly, I (a,c) never contains sequences of the form
d0d1d2 · · ·dkb0 (x)b1 (x)b2 (x) · · · for any arbitrary leading bits d0d1d2 · · ·dk.

How should these subshifts be visualized as binary trees? The simplest case to
visualize is to take a = m/2n and c = (m+1)/2n being dyadic rationals, for some
integers m,n. In this case, one takes the bit-expansion for both have the same n leading
bits: one starts at the root of the tree, and walks down the binary tree, making left-right
moves in accordance with this sequence, and after n moves, arrives at a node above a
subtree. Just cut out this subtree, in it’s entirety. That’s the first cut. Now repeat the
process, for the left and right subtrees, from off the root, ad infinitum. For a and c not
dyadic rationals, the process is more complicated. If a and c are ordinary rationals, thus
having a repeating bit-sequence, one performs in the same way, but cyclically walking
down the side branches of subtrees. For a and c irrational, the algorithm is considerably
more complicated, and is left as an exercise for the reader :-).

A general classification of shifts with holes, for the beta transform, was performed
by Lyndsey Clark[29].

2.3 Generalized compressors and expanders
The range of the compressor function is a shift with a hole. Specifically, for a given
β , the range of cprβ is I

(
β

2 ,
1
2

)
. The construction for shifts with holes can then be

applied to construct generalized compressor and expander functions. One way, which
is really rather cheesy, but it works, is to define the function

dcprβ ,γ (a;x) =
∞

∑
n=0

[
1

γn+1

2n−1

∑
k=0

δ

(
x− a+ k

β n

)]
and then define the generalized compressor as

cpr(a;x) =
∫ x

0
dcpr(a;y)dy
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That is, as one walks along the unit interval, from left to right, one picks up points with
weights on them, obtaining a generalized Devil’s staircase (Cantor-Vitali) function.
This generalization does not seem to be terribly useful here, and is left to rot.

2.4 Self-similarity
Subshifts are, by definition, self-similar. If S is a subshift, and T is the shift operator,
then T S = S is the key relation obeyed by a subshift. It is fun to see how this actually
manifests itself on the unit interval.

So, the two functions cpr and pdr are self-similar. The pdr function demonstrates
classic period doubling self-similarity: namely, under g(x) = x/2, it behaves as(

pdrβ ◦g
)
(x) = pdrβ

( x
2

)
=

1
β

pdrβ (x)

while under reflection r(x) = 1− x, it behaves as(
pdrβ ◦ r

)
(x) = pdrβ (1− x) =

β

2(β −1)
−pdrβ (x)

Note that

lim
x→1

pdrβ (x) =
β

2(β −1)

The full dyadic monoid is generated by the generators g and r. It consists of all
finite-length strings of the form

γ = ga1rga2rga3r · · ·rgam

for a finite-length list of positive integers (a1,a2,a3, · · · ,am). Note that this list can
be interpreted as a continued fraction; this establishes an isomorphism between the
continued fractions and the dyadic monoid. This isomorphism is conventionally called
the Minkowski question-mark function. We can be a bit more explicit. Write

gβ (x) =
x
β

and

rβ (x) =
β

2(β −1)
− x

Note that rβ ◦ rβ = 1 so that it is a reflection, and that r2 (x) = 1− x is the reflection of
the unit interval. For strings of binary digits, the reflection performs the exchange of
0 ↔ 1; its a mirroring symmetry. The above relationships then become

gβ ◦pdrβ = pdrβ ◦g2

and
rβ ◦pdrβ = pdrβ ◦ r2
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The symmetry under the dyadic monoid is simply the statement that

γβ ◦pdrβ = pdrβ ◦ γ2

for any γ of the above form.
The function cpr also exhibits self-similarity, although it alters (expands) what hap-

pens on the x axis. Several self-similarities are apparent. First, for 0 ≤ x ≤ 1, one has

cprβ

( x
2

)
=

1
2

cprβ

(
βx
2

)
Equivalently, for 0 ≤ y ≤ β/2 one can trivially restate the above as

cprβ

(
y
β

)
=

1
2

cprβ (y) (15)

Although this follows trivially, this restatement helps avoid certain confusions later in
this text. This can also be written as

g2 ◦ cprβ = cprβ ◦gβ

There is obviously no corresponding reflection symmetry. The left and right halves are
identical to one-another, but offset:

cprβ

(
1
2
+

x
2

)
=

1
2
+ cprβ

( x
2

)
It follows that

cprβ

(
1
2
+

y
β

)
=

1
2
+

1
2

cprβ (y)

Combining the above results into one, one has that

cprβ

(
y
β

)
+ cprβ

(
1
2
+

y
β

)
=

1
2
+ cprβ (y)

This last form is interesting, as it makes an appearance in relation to the transfer oper-
ator, defined below.

2.5 Other things with similar symmetry
The cpr curve is just one that belongs to a class of such curves. As an example, one
may construct a Takagi (blancmange) curve by iterating triangles whose peak is lo-
cated at 1/β . The Takagi curve is an example of a curve transforming under a 3-
dimensional representation of the dyadic monoid; the cpr curves transforms under a
two-dimensional representation. See my paper on the Takagi curve for details. Figure
11 shows such a curve. Denote by takβ ;w (x)a curve constructed in this fashion. The
transformation properties of this curve include self-similarity on the left, as

takβ ;w

(
x
β

)
= x+w takβ ;w (x)
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Figure 11: Skew Takagi Curve
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This figure shows a skew Takagi curve, and the first four steps of its construction. The
initial triangle is of height 1; the apex is located at 1/β , for β = 1.6 in this figure.
Subsequent triangles obtain a height of w=0.7 above the apex point, and are similarly
skew.

for 0 ≤ x ≤ 1 and self-similarity on the right, as

takβ ;w

(
1
β
+ x
(

1− 1
β

))
= 1− x+w takβ ;w (x)

Both of these properties follow directly from the construction of the curve; they can be
taken as the defining equations for the curve. That is, the curve can be taken as that
function which satisfies these two recursion relations.

The derivative of the skew Takagi curve is shown in figure 12, and, for lack of a
better name, could be called the skew Haar fractal wavelet. It can be defined as the
formal derivative

harβ ;w (x) =
d
dx

takβ ;w (x)

This formal derivative is well-defined, as the skew Takagi is smooth and piecewise-
linear almost everywhere; the places where it has corners is a dense set of measure
zero. That is, the derivative is defined everywhere, except on a set of measure zero,
which happens to be dense in the unit interval.

Note that the Haar fractal wavelet is piece-wise constant everywhere. It is con-
structed from a “mother wavelet” given by

hβ (x) =

{
β for 0 ≤ x < 1

β

−β

β−1 for 1
β
≤ x ≤ 1

(16)
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Figure 12: Skew Haar Wavelet
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This figure shows the derivative of the skew Takagi curve. Note that it is piece-wise
constant everywhere. The mother wavelet is shown, as well as the fourth iteration. The
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which is then iterated on to form the fractal curve harβ ;w (x). The self symmetries are

harβ ;w

(
x
β

)
= β +w harβ ;w (x)

and

harβ ;w

(
1
β
+ x
(

1− 1
β

))
=− β

β −1
+w harβ ;w (x)

2.6 Fixed Points; Periodic Orbits
The Bernoulli shift, given by eqn 2, generates every possible bit-sequence. As was
observed in a previous section, not every possible bit-sequence occurs in the beta shift.
The longest sequence of all-ones possible was given by eqn 14. Arbitrary finite lengths
of zeros do appear; but are there fixed points, i.e. sequences that terminate in all-zeros?
Clearly, x = 1/2β n is such a fixed point: after n+1 iterations of eqn 4, x goes to zero,
and stays there. Is this the only such fixed point? The answer depends on β . If β

can be written in the form of β n = 2m+ 1 for some integers n and m, then the values
of x which can iterate down to zero in n+ 1 steps are dense in the interval [0,β/2].
Curiously, such values β are dense in the interval [1,2). A later chapter performs
explores periodic orbits in great detail.
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3 Transfer operators
Given any map from a space to itself, mapping points to points, the pushforward maps
distributions to distributions. The pushforward is a linear operator, called the trans-
fer operator or the Ruelle–Frobenius–Perron operator. The spectrum of this operator,
broken down into eigenfunctions and eigenvalues, can be used to understand the time
evolution of a given density distribution. The invariant measure is an eigenstate of this
operator, it is the eigenstate with eigenvalue one. There are other eigenstates; these are
explored in this section.

Restricting to the unit interval, given an iterated map f : [0,1]→ [0,1], the transfer
operator acting on a distribution ρ : [0,1]→ R is defined as

[
L f ρ

]
(y) = ∑

x= f−1(y)

ρ(x)
| f ′(x)|

The next subsection gives an explicit expression for this, when f is the β -transform.
After that, a subsection reviewing the invariant measure, and then a discussion of some
other eigenfunctions.

3.1 Motivation
There are two broad approaches for studying iterated functions. One is to examine the
point dynamics and orbits: “where does the point x go, when iterated?”. The other
is in terms of distributions: “how does a scattered dust of points evolve over time?”.
Within the context of physics, these give two broad views of reality. The first is of
microscopic, time-reversible systems whose future is deterministic and known with
infinite precision. The second is of macroscopic, time-irreversible thermodynamics,
where time can only go forward, and the future is unknown and unknowable. Of these
two approaches, the first is commonplace and inescapable; the second remains obscure,
poorly-recognized and opaque. Thus, a large part of this text is devoted to this second
approach.

If iterating a map x 7→ f (x) 7→ f ( f (x)) 7→ · · · pulls a point x through f , through
time, then the action of the map f on a distribution ρ is a pushforward:

ρ (A) 7→ ρ
(

f−1 (A)
)
7→ ρ

(
f−1 ( f−1 (A)

))
7→ · · ·

The proper definition of a pushforward requires a significant development of the con-
cepts of measurable spaces and Borel sigma algebras, topics that will be gently re-
viewed a bit further in this introductory section. For the present, it is enough to take
ρ : [0,1]→ R to be some function defined on the unit interval. In the above, A ⊂ [0,1]
is a subset of the unit interval, so that ρ (A) =

∫
A ρ (x)dx is an ordinary integral, the

“size” of the set A with respect to the distribution.
The challenge is to find an explicit expression for the pushforward ρ

(
f−1 (A)

)
.

This can be obtained as a change of variable y = f (x) under integration. Start with any
function h; it’s integral over the set A is as above: h(A) =

∫
A h(y)dy. Under the change

of variable, this becomes
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h(A) =
∫

A
h(y)dy =

∫
f−1(A)

h( f (x))
∣∣ f ′ (x)∣∣dx

Writing the integrand as ρ (x) = h( f (x)) | f ′ (x)| and working backwards, one recovers

h(y) =
ρ
(

f−1 (y)
)

| f ′ ( f−1 (y))|

Plugging this back through gives the identity∫
A

ρ
(

f−1 (y)
)

| f ′ ( f−1 (y))|
dy =

∫
f−1(A)

ρ (x)dx = ρ
(

f−1 (A)
)

The right-hand-side is the desired pushforward; the left-hand side is an explicit expres-
sion for it. There was a minor sleight-of-hand in the above derivation: the map y= f (x)
may not be one-to-one. Thus, there may be several distinct points x = f−1 (y). In this
case, the above needs to be amended as

h(y) = ∑
x∈ f−1(y)

ρ (x)
| f ′ (x)|

As h depends only on ρ and f , the sum construction on the right-hand side can be
thought of as an operation L , defined by f , acting on ρ; in short-hand, h = L f ρ .

The symbol L is used to remind that this is a linear operator: L (aρ +bσ) =
aL ρ+bL σ for any pair of real numbers a,b and any functions ρ,σ . The pushforward
sequence now becomes

ρ (A) 7→
[
L f ρ

]
(A) 7→

[
L f L f ρ

]
(A) 7→ · · ·

Thus, we’ve defined a linear operator L f that depends only on the iterated function f ,
and has the property of mapping distributions to other distributions as it is iterated. It
is the result of commuting with function composition: L f ◦ ρ = ρ ◦ f−1; it’s a kind
of a trick with function composition. Indeed, one can define an analogous operator
K f ◦ρ = ρ ◦ f , the “composition operator” or “Koopman operator”, that acts as a kind
of (one-sided) inverse to L f .

Formally, the pushforward L f is called the “transfer operator” or the “Ruelle–-
Frobenius–Perron operator”. As a linear operator, the full force of operator theory
comes into play. The primary task is to describe it’s spectrum (it’s eigenfunctions
and eigenvalues). Two aspects of this spectrum are interesting. The first is the so-
called “invariant measure”, the distribution µ : [0,1] → R that defines a density on
the unit interval that is invariant under the application of the pushforward: L f µ =
µ . An informal example of such an invariant measure are the rings of Saturn: an
accumulation of dust and gravel, orbiting Saturn, coupled by gravitation to both Saturn
and orbiting moons, yet in a stable dynamical distribution. This is the physical meaning
and importance of the invariant measure; more generally, it appears as the “ground
state” or “thermodynamic equilibrium state” in a vast variety of dynamical systems.
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Aside from the invariant measure, there is also the question of the rest of the spec-
trum. These are described by the eigenfunctions ρ satisfying L ρ = λρ . By the theo-
rem of Frobenius–Perron, all these other solutions have eigenvalue |λ |< 1. In physics,
these correspond to the decaying modes, to the distributions that disappear over time.
For the example of Saturn, these are anything not orbiting in the plane of the rings:
tidal forces and perturbations from the moons will force such orbits either into the ring,
or crash into the planet, or possibly fly away to infinity. The other orbits are not stable.
Thus, a characterization of the decaying spectrum is of general interest.

A much stronger conception is that the decaying spectrum has something to do
with the irreversibility of time. In the macroscopic world, this is plainly obvious. In
the microscopic world, the laws of physics are manifestly time-reversible. Somehow,
complex dynamical systems pass through a region of chaotic and turbulent motion, cul-
minating in thermodynamic equilibrium. The decaying spectrum provides a conceptual
framework in which one can ponder this transition.

This is where the fun begins. The spectrum is not a “fixed thing”, but depends
strongly on the space of functions on which L f is allowed to act. If one limits oneself
to ρ drawn from the space of piece-wise continuous and smooth functions, i.e. poly-
nomials, then L f will in general have a discrete spectrum. If instead, ρ ∈ L2 [0,1] the
space of functions that are square-integrable on the unit interval, then the spectrum will
often be continuous, and perhaps may have a large kernel. Larger spaces exhibit even
wilder behavior: if one asks only that ρ be L1-integrable (not square-integrable), then
it is possible for continuous-nowhere functions to appear as eigenfunctions of L f . An
explicit example of the latter is the Minkowski measure for the transfer operator of the
Minkowski Question Mark function: it vanishes on the rationals, but can be integrated
just fine; it’s integral is the Question Mark function. In short, a rich variety can often
be found. In the present case, it seems, nothing quite this rich, but getting there.

3.2 The β -shift Transfer Operator
This text works primarily with the β -shift, instead of the more common β -transform.
These two are more-or-less the same thing, differing only by scale factors, as given
in eqn. 9. The transfer operators are likewise only superficially different, being just
rescalings of one-another; both are given below.

The transfer operator the beta-shift map Tβ (x) is

[
Lβ f

]
(y) =

{
1
β

[
f
(

y
β

)
+ f

(
y
β
+ 1

2

)]
for 0 ≤ y ≤ β/2

0 for β/2 < y ≤ 1

or, written more compactly[
Lβ f

]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)

(17)

where Θ is the Heaviside step function. The transfer operator for the beta-transform
map tβ (x) is [

Mβ f
]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
β

)
Θ(β −1− y)

]
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The density distributions graphed in figure 1 are those functions satisfying[
Lβ µ

]
(y) = µ (y) (18)

That is, the µ (y) satisfies

µ (y) =
1
β

[
µ

(
y
β

)
+µ

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)

(19)

Likewise, the Gelfond-Parry measure of eqn 10 satisfies[
Mβ νβ

]
(y) = νβ (y)

Recall that µ (y) = 2
β

νβ

(
2y
β

)
Θ

(
β

2 − y
)

; the two invariant measures are just scaled

copies of one-another. Both are normalized so that
∫ 1

0 µ (y)dy =
∫ 1

0 νβ (y)dy = 1.
Both of these invariant measures are the Ruelle-Frobenius-Perron (RFP) eigenfunc-

tions of the corresponding operators, as they correspond to the largest eigenvalues of
the transfer operators, in each case being the eigenvalue one.

More generally, one is interested in characterizing the spectrum[
Lβ ρ

]
(y) = λρ (y)

for eigenvalues |λ | ≤ 1 and eigenfunctions ρ (y). Solving this equation requires choos-
ing a space of functions in which to work. Natural choices include piece-wise contin-
uous smooth functions (piece-wise polynomial functions), any of the Banach spaces,
and in particular, the space of square-integrable functions. In general, the spectrum
will be complex-valued: eigenvalues will be complex numbers.

If a distribution ρ (y) is nonzero on the interval [β/2,1], the operator Lβ will map
it to one that is zero on this interval. Thus, it makes sense to restrict oneself to densities
that are non-zero only on [0,β/2]. When this is done, eqn 17 has the slightly more
convenient form[

Lβ f
]
(y) =

1
β

[
f
(

y
β

)
Θ(m0 − y)+ f

(
y
β
+

1
2

)
Θ(m1 − y)

]
with m0 = β/2 and m1 = β (β −1)/2= Tβ (m0). It is always the case that m1 <m0 and
so the second term above vanished on the interval [m1,m0]. This can be gainfully em-
ployed in a variety of settings; typically to write Lβ f on [m1,m0] as a simple rescaling
of Lβ f on [0,m1].

This equation can be treated as a recurrence relation; setting Lβ f = f gives the
λ = 1 eigenstate. Performing this recursion gives exactly the densities shown in figure
1. Computationally, these are much cheaper to compute than trying to track a scattered
cloud of points; the result is free of stochastic sampling noise. This density is the
Ruelle–Frobenius–Perron eigenstate; an explicit expression was given by Gelfond and
by Parry, as described in the next section.
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3.3 (No) Real-analytic solutions
What happens if we start with the assumption that there might be a real-analytic solu-
tion to the eigenequation? It is reasonable to expect that this hope is doomed, but the
process is instructive anyway. Start by positing

f (y) =
∞

∑
n=0

anyn

Ignoring, for a moment, the step function, and plugging this into the above gives

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
2

)]
=

∞

∑
m=0

ym

β m+1

[
am +

∞

∑
j=0

(
m+ j

m

)
2− jam+ j

]

Matching, term by term, this gives the eigenequation λam = ∑k Lmkak with Lmk an
upper-triangular matrix, having matrix entries

Lmk =
1

β m+1

[
1+

1
2k−m

(
k
m

)]
for k ≥ m and Lmk = 0 otherwise. Although this is upper-triangular, and thus solv-
able, the omission of the step function was critical: the eigenfunction has to vanish for
y > β/2 and there is no way to do this with a real-analytic function. Inserting a step
function into the mix ruins the term-by-term comparison. That is, positing

f (y) = Θ

(
β

2
− y
)

∞

∑
n=0

anyn

prevents the term-by-term comparison from passing through.
Perhaps working with the beta-shift here is a bad idea. Let’s try again with the

beta-transform. Without ignoring the step function, and plugging through as before
gives:

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
β

)
Θ(β −1− y)

]
=

∞

∑
m=0

ym

β m+1

[
am +

∞

∑
j=0

(
m+ j

m

)
β
− jam+ jΘ(β −1− y)

]

The step function prevents term-by-term comparison. If it is conveniently ignored or
forgotten, then a pseudo-solution is easy: the term-by-term solution gives the eigenequa-
tion λam = ∑k Mmkak with Mmk an upper-triangular matrix, having matrix entries

Mmk =
1

β m+1

[
1+

1
β k−m

(
k
m

)]
for k ≥ m and Mmk = 0 otherwise. This matrix is solvable. Its solutions are effectively
the Bernoulli polynomials. By ignoring the step function, all that has happened is
that we’ve rediscovered the real-analytic solutions to the Bernoulli process; indeed,
the term-by-term comparison does work for the special case of β = 2, when the step
function really does disappear.
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3.4 Almost-solutions
If one ignores the Heaviside step function in the definition 17, one easily finds a num-
ber of “almost solutions” to the transfer operator. These are most easily discussed by
defining the operator

[
Pβ f

]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
2

)]
Solving this operator is relatively straight-forward. Consider, for example, the mono-
mial f (y) = yn. Clearly,

[
Pβ yn

]
is a polynomial of degree n and that therefore, the

space of polynomials is closed under the action of Pβ . But this result is even stronger:
the monomials provide a basis in which Pβ is upper-triangular, i.e. solvable. It’s
eigensolutions in this basis are polynomials. The eigenspectrum is clearly discrete,
and is given by (β )−n−1 for integers n corresponding to the degree of the polynomial
eigensolution.

This all goes horribly wrong if one instead considers Lβ and the almost-monomials

f (y) = ynΘ

(
β

2 − y
)

. This does not provide a basis that is closed under the action of
Lβ . Attempting to find the closure by iterating on Lβ generates a splatter of step
functions. This case is examined more closely in the next chapter.

Attempting some guess-work, the self-similarity of the cpr function suggests an
opening. Specifically, let eiβ (x) = cprβ (x)−1/2. The one finds that

[
Pβ eiβ

]
(y) =

1
β

[
eiβ

(
y
β

)
+ eiβ

(
y
β
+

1
2

)]
=

eiβ (y)
β

This is a non-polynomial, fractal eigenfunction of Pβ , and, with a bit of elbow-grease,
one can find many more. This includes the Takagi functions, and their higher-order
analogs, which are, roughly speaking, Takagi functions constructed from polynomials.
These all have interesting self-similarity properties under the dyadic monoid.

Unfortunately, one has that eiβ (x) ̸= 0 when β < 2x; it won’t do as an eigenfunction
of Lβ . There is no obvious, simple modification of eiβ (x) that would cause it to be a

valid eigensolution of Lβ . Manually installing a factor of Θ

(
β

2 − y
)

and then iterating
to find the closure leads to the same splatter of step functions as in the case of the
polynomials.

Another interesting case arises if one attempts a Fourier-inspired basis. Define

eβ ;n;l (x) = exp i2π (2l +1)β
nx

for integer l. One then obtains a shift sequence[
Pβ eβ ;n;l

]
(x) =

1
β

eβ ;n−1;l (x)
(

1+ eβ ;n;l

(
1
2

))
This is not a viable candidate for Lβ , as it is again beset by the step function. As a shift
sequence, it can be used to construct coherent states that are eigenfunctions of Pβ ,
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having any eigenvalue within the unit disk. Specifically, observe that eβ ;0;l (1/2) =
exp iπ (2l +1) = −1 so that

[
Pβ eβ ;0;l

]
(x) = 0 and so the shift sequence terminates

after finite iteration. Given a complex value z, construct the coherent state as

φl;z (x) =
∞

∑
n=0

zneβ ;n;l (x)

The shift is then[
Pβ φl;z

]
(x) =

z
β

∞

∑
n=0

zn
(

1+ eβ ;n+1;l

(
1
2

))
eβ ;n;l (x)

This is not particularly useful, until one notices that for for certain values of β , this
contains nilpotent sub-series.

Specifically, fix a value of n=N and consider those values of β for which eβ ;N;l (1/2)=
−1. This holds whenever β N is an odd integer, that is, whenever β = (2m+1)1/N (and,
as always, β ≤ 2). For these special values of β , one has that

[
Pβ eβ ;N;l

]
(x) = 0 and

so the functions

φl;z;N (x) =
N

∑
n=0

zneβ ;n;l (x)

vanish after N iterations of Pβ . That is, these can be used to form a a basis in
which Pβ is nilpotent. Conversely, letting m and N be free, the values for which
β = (2m+1)1/N are dense in the interval [1,2) and so any β is arbitrarily close to
one with a nilpotent function space. These values of β are exactly the same values for
which the bit sequences given by eqn 5 eventually terminate in all zeros; i.e. become
periodic fixed points with period 1.

The existence of a dense set of fixed points is dual to the the existence of nilpotent
densities. That is, one “causes” or “forces” the other to happen. This idea should be
further elaborated, as it establishes a duality between countable and uncountable sets,
which has an element of curiosity to it.

Presumably, there are special values of β which allow a periodic orbits to originate
from a dense set. Such values of β , and such periodic orbits, should then correspond
to specific self-similarities of the φl;z (x) function, specifically manifesting as cyclic
behavior in

(
1+ eβ ;n+1;l

( 1
2

))p
for some period p. Whether there is some similar man-

ifestation for Lβ is wholly unclear; however, the examination of the periodic orbits of
the beta shift, undertaken in a later chapter, will provide a strong clue.

3.5 Complex eigenvalues
Since the operator Lβ is purely real, then if it has a complex spectrum, the eigenvalues
and eigenfunctions must come in complex-conjugate pairs. This can make numerical
searches and numerical convergence behave in unexpected ways, so some brief com-
mentary is in order.

Assume that there exists some complex-valued eigenfunction ρλ (w) for fixed,
complex eigenvalue λ . Write it’s real and complex components as

ρλ (w) = σ (w)+ iτ (w)
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while also writing λ = a+ ib. Then[
Lβ σ

]
(w) =

1
2
[
Lβ (ρλ + ρ̄λ )

]
(w)

=
1
2
(
λρλ (w)+ λ̄ ρ̄λ (w)

)
=aσ (w)−bτ (w)

Both left and right sides of the above are real. If one had somehow stumbled upon σ (w)
numerically, as an eigenvector-candidate, then the above admixing of the imaginary
component would quickly throw one off the hunt. Thus, a numeric search for complex-
valued eigenfunctions must necessarily take into account eigenfunction pairs, with real
and imaginary components that mix together as above.

Consistency requires that[
Lβ τ

]
(w) =

1
2i

[
Lβ (ρλ − ρ̄λ )

]
(w)

=
1
2i

(
λρλ (w)− λ̄ ρ̄λ (w)

)
=aτ (w)+bσ (w)

3.6 The Gelfond–Parry measure
An explicit expression for the solution to Mβ ν = ν was given by Gelfond[5] and by
Parry[3]. It is the expression given by eqn 10. Unfortunately, I find the Russian original
of Gelfond’s article unreadable, and Parry’s work, stemming from his PhD thesis, is
not available online. Therefore, it is of some interest to provide a proof suitable for the
current text. A generalization of this proof, stated in terms of a Borel algebra, is used
in the subsequent section to construct general eigenfunctions.

There are two routes: either a direct verification that eqn 10 is correct, or a deriva-
tion of eqn 10 from geometric intuition. The direct verification is useful for practical
purposes; the geometric construction, as a stretch-cut-stack map, provides insight. Both
are given.

The Gelfond–Parry measure includes a normalization factor. It will be of recurring
interest, and so a graph f it is presented in figure 13.

3.6.1 Direct verification

A direct verification of correctness is done below, explicitly showing all steps in labo-
rious detail. It’s not at all difficult; just a bit hard on the eyes.

As before, let t (x) ≡ tβ (x) = βx mod 1 be the β -transformation of eqn 8, and
tn (x) the iterated transformation. Let Θ(x) be the Heaviside step function as always,
and to keep notation brief, let tn ≡ tn (1). The Gelfond–Parry measure is then

ν (y) =
1
F

∞

∑
n=0

Θ(tn − y)
β n
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Figure 13: Gelfond–Parry Normalization
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Gelfond--Parry Normalization

The above figure shows 1/F for the normalization constant F = ∑
∞
n=0 tnβ−n as a func-

tion of β . The horizonal axis is stretched out using log(β −1) so as to amplify the
behavior as β → 1. One has that F → ∞ in this limit (so 1/F → 0); the curve suggests
just how catastrophic that limit is. A graph of F vs. β , without the rescaling of the
horizontal axis, is shown in figure 30.
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where the normalization F is given by

F =
∞

∑
n=0

tn
β n

The transfer operator M for the beta-transformation is slightly more convenient to
work with than L for this particular case. It is given by

[M f ] (y) =
1
β

[
f
(

y
β

)
+ f

(
y+1

β

)
Θ(β −1− y)

]
and we wish to verify that M ν = ν . Plugging in directly,

P = ν

(
y
β

)
+ν

(
y+1

β

)
Θ(β −1− y) =

=
1
F

∞

∑
n=0

1
β n

(
Θ

(
tn −

y
β

)
+Θ

(
tn −

y+1
β

)
Θ(β −1− y)

)
=

1
F

∞

∑
n=0

1
β n (Θ(β tn − y)+Θ(β tn −1− y))

The second line follows from the first, since Θ(ax) = Θ(x) for all constants a, and
the Θ(β −1− y) can be safely dropped, since tn ≤ 1 for all n. These terms simplify,
depending on whether tn is small or large. Explicitly, one has

Θ(β tn −1− y) = 0 if β tn −1 < 0
Θ(β tn − y) = 1 if β tn −1 > 0

and so

P =
1
F

∞

∑
n=0

1
β n (Θ(1−β tn)Θ(β tn − y)+Θ(β tn −1)(1+Θ(β tn −1− y)))

These can be collapsed by noting that

β tn = tn+1 if β tn −1 < 0
β tn −1 = tn+1 if β tn −1 > 0

and so

P =
1
F

∞

∑
n=0

1
β n (Θ(1−β tn)Θ(tn+1 − y)+Θ(β tn −1)(1+Θ(tn+1 − y)))

=
1
F

∞

∑
n=0

1
β n (Θ(tn+1 − y) [Θ(1−β tn)+Θ(β tn −1)]+Θ(β tn −1))

=
1
F

∞

∑
n=0

1
β n (Θ(tn+1 − y)+Θ(β tn −1))

= βν (y)− β

F
+

1
F

∞

∑
n=0

Θ(β tn −1)
β n

= βν (y)
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The last sum on the right is just the β -expansion for 1. That is, the β -expansion of x is

x =
∞

∑
n=0

Θ(β tn (x)−1)
β n+1

This is just eqn 6 written in a different way (making use of the equivalence 9). Thus
P = βν (y) and so M ν = ν as claimed.

3.6.2 Stretch–Cut–Stack Map

The measure can be geometrically constructed and intuitively understood as the result
of the repeated application of a bakers-map-style stretch and squash operation. The
idea is to iterate νn+1 = Mβ νn, starting with ν0 = 1 and then take the limit n → ∞; the
result is νn → ν in the limit, given as above. The basic stretch-cut-stack operation is
given below, providing the intuition. The proof that it converges as desired is nearly
identical to the (shorter) proof above.

Begin with a first approximation that ν0 is constant on the interval [0,1], so that
ν0 (y) = Θ(t0 − y) with endpoint t0 = 1. The operation of M acting on this is to stretch
it out to the interval [0,β ], chop off the [1,β ] part, move it to [0,β −1], stack it on
top, doubling the density in this region. The doubling, though, is partly counteracted
by the stretching, which thins out the density to 1/β uniformly over the entire interval
[0,β ]. This operation preserves the grand-total measure on the unit interval. Writing
β −1 = t1 = t (t0) = t (1) for the first iterate of the endpoint t0 = 1, this stretch, cut and
stack operation should result in

ν1 (y) =

{
2
β

for y ∈ [0, t1]
1
β

for y ∈ [t1, t0]

The stretch–cut–stack operation is the intuitive, geometrical explanation for obtaining
the first iterate. The same result is obtained algebraically, by writing ν1 = M ν0 and
then plugging and chugging:

ν1 (y) =
1
β
[Θ(t0 − y)+Θ(t1 − y)]

=
ν0 (y)

β
+

Θ(t1 − y)
β

A recursive formula for νn is needed. Rearrange the above as

ν1 (y) =
1
β
[1+Θ(t1 − y)]

= Θ(t0 − y)+
Θ(t1 − y)

β
−
(

1− 1
β

)
=

1

∑
k=0

Θ(tk − y)
β k − c1ν0

= ρ1 − c1ν0
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The appropriate general form will use ρn defined as

ρn =
n

∑
k=0

1
β k Θ(tk − y)

and cn defined as

cn = 1−
n−1

∑
k=0

Θ(β tk −1)
β k+1 (20)

It will be shown that the recursive form is

νn = ρn −
n−1

∑
k=0

cn−kνk

Iteration is performed directly, so that νn+1 = M νn.
It is convenient to isolate the action of M on ρn. Plugging through,

βM ρn = Pn = ρn

(
y
β

)
+ρn

(
y+1

β

)
Θ(t1 − y)

=
n

∑
k=0

1
β k

(
Θ

(
tk −

y
β

)
+Θ

(
tk −

y+1
β

)
Θ(t1 − y)

)
=

n

∑
k=0

1
β k (Θ(β tk − y)+Θ(β tk −1− y))

The Θ(t1 − y) can be safely dropped, because tk ≤ 1 for all k. That is, Θ(t1 − y) =
Θ(β −1− y) and since β tk − 1− y ≤ β − 1− y the extra factor of Θ(t1 − y) has no
effect.

These terms simplify, depending on whether tk is small or large. Explicitly, one has

Θ(β tk −1− y) = 0 if β tk −1 < 0
Θ(β tk − y) = 1 if β tk −1 > 0

and so

Pn =
n

∑
k=0

1
β k (Θ(1−β tk)Θ(β tk − y)+Θ(β tk −1)(1+Θ(β tk −1− y)))

These can be collapsed by noting that

β tk = tk+1 if β tk −1 < 0
β tk −1 = tk+1 if β tk −1 > 0
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and so

Pn =
n

∑
k=0

1
β k (Θ(1−β tk)Θ(tk+1 − y)+Θ(β tk −1)(1+Θ(tk+1 − y)))

=
n

∑
k=0

1
β k (Θ(tk+1 − y) [Θ(1−β tk)+Θ(β tk −1)]+Θ(β tk −1))

=
n

∑
k=0

1
β k (Θ(tk+1 − y)+Θ(β tk −1))

= β

n+1

∑
k=0

1
β k Θ(tk − y)−β +β

n

∑
k=0

Θ(β tk −1)
β k+1

= βρn+1 −β

(
1−

n

∑
k=0

Θ(β tk −1)
β k+1

)
= β (ρn+1 − cn+1)

Returning to the Ansatz for νn in terms of ρn and plugging through,

νn+1 = M νn =
1
β

Pn −M
n−1

∑
k=0

cn−kνk

= ρn+1 − cn+1 −
n−1

∑
k=0

cn−kνk+1

= ρn+1 −
n

∑
k=0

cn+1−kνk

and so the hypothesized recursive form is preserved.
The measure is preserved with each iteration, by construction. That is,

∫ 1
0 νn (y)dy=

1 for all n. Verifying this:

1 =
∫ 1

0
νn (y)dy =

n

∑
k=0

1
β k

∫ 1

0
Θ(tk − y)dy−

n−1

∑
k=0

cn−k

∫ 1

0
νk

=
n

∑
k=0

tk
β k −

n

∑
k=1

ck

This identity can be verified by plugging through, exchanging sums and then compar-
ing terms; the underlying identity is

tn = β
ncn

which follows, as each Θ(β tk −1) records a decision to decrement, or not, the product
β tk occurring in the iteration tk+1 = β tk mod 1.
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A curious identity arises in the verification of the above. After rearranging terms
and swapping the summation order, one gets

n+1 =
n

∑
k=0

β
−k (tk +(n− k+1)Θ(β tk−1 −1))

where, to keep the sum well-defined, set t−1 = 0.
The sum in cn is a partial β -expansion for 1. Each term can be recognized as a bit

from the bit-expansion:

Θ(β tk −1) = dn

(
1
2

)
= kn

(
β

2

)
= εn

(
1
β

)
with kn as defined in eqn 5, εn defined as in eqn 11 and dn as in eqn 23 (apologies for
the variety of notations; each is “natural” in a specific context.) The β -expansion of
a real number x is as given in eqn 6. In the present context, this is the expansion for
x = β/2, or, after rescaling, the expansion for x = 1:

1 =
∞

∑
k=0

Θ(β tk −1)
β k+1

Thus, |cn|< β−n+1 and cn → 0 as n → ∞.
The Gelfond–Parry normalization is the n → ∞ limit

F =
∞

∑
k=0

tk
β k

The sequence of νn constructed above give a density that is the result of n repeated
stretch-cut-stack operations. They preserve the total density. The n → ∞ limit is the
invariant measure ν .

Only the first few steps were overtly geometric; the recursive step required a bit
of algebraic grinding. The piece that is being cut and stacked is Θ(β tk −1− y) but it
gets a bit lost in the shuffle. Its hard to see the pancake-stacking that is happening in
the algebra, at least, not without drawing careful pictures. The stretch operation moves
many of the β tk past 1, where they are restacked, while many other β tk do not cross
past the cut at 1; these are the two possibilities. Drawing a pancake diagram clarifies
the ultimately geometric aspect of this recursive operation.

3.6.3 Stacking generic functions

The above proof can be extended to other shapes. For example, consider iterating
ν0 (y) = y−1/2. Based on experience with the Bernoulli shift, one might expect this to
generate an eigenfunction with eigenvalue 1/β . Similarly, the Bernoulli polynomials
ν0 (y) = Bn (y) = yn +O

(
yn−1

)
might be expected to generate eigenfunctions with

eigenvalue 1/β n. Thus, reproducing the above proof, with a general initial distribution
ν0 promises generalized results.
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The rest of this section is filled with false starts, motivating arguments, repeated
calculations, double and triple checks. To get the final result, while skipping the de-
tailed proof/derivation, hop to the next subsection, title “Stacking generic functions –
conclusion”.

To discover the general form, perform the first few iterations by blunt force. Mirror
the earlier proof as closely as possible; it provides a working template. Start with

ν1 (y) =
1
β

[
ν0

(
y
β

)
+ν0

(
y
β
+

1
β

)
Θ(t1 − y)

]
= ν0 (y)Θ(t0 − y)+

1
β

ν0

(
y+1

β

)
Θ(t1 − y)−

[
ν0 (y)−

1
β

ν0

(
y
β

)]
= ρ1 − c1

where

ρ1 = ν0 (y)+
1
β

ν0

(
y+1

β

)
Θ(t1 − y)

and

c1 = ν0 (y)−
1
β

ν0

(
y
β

)
As before, contemplate the application of M to each of these pieces, individually.
Examining ρ , the critical structure is the step function, which is the primary object to
track. Separate the step function into it’s own factor, so that it can be explicitly tracked
and manipulated. Thus, define f and g such that

ρ1 = f (y)+g(y)Θ(t1 − y)

Then

βM ρ1 = f
(

y
β

)
+ f

(
y+1

β

)
Θ(t1 − y)

+g
(

y
β

)
Θ(β t1 − y)+g

(
y+1

β

)
Θ(β t1 − y−1)Θ(t1 − y)

The g terms are susceptible to

Θ(β tk −1− y) = 0 if β tk −1 < 0
Θ(β tk − y) = 1 if β tk −1 > 0

Together with the identity

1 = Θ(β t1 −1)+Θ(1−β t1)
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This allows

βM ρ1 = f
(

y
β

)
+ f

(
y+1

β

)
Θ(t1 − y)

+g
(

y
β

)
Θ(β t1 − y) [Θ(β t1 −1)+Θ(1−β t1)]

+g
(

y+1
β

)
Θ(β t1 − y−1)Θ(t1 − y) [Θ(β t1 −1)+Θ(1−β t1)]

= f
(

y
β

)
+ f

(
y+1

β

)
Θ(t1 − y)

+g
(

y
β

)
[Θ(β t1 −1)+Θ(β t1 − y)Θ(1−β t1)]

+g
(

y+1
β

)
Θ(β t1 − y−1)Θ(β t1 −1)

As before, make use of

β tk = tk+1 if β tk −1 < 0
β tk −1 = tk+1 if β tk −1 > 0

to write

βM ρ1 = f
(

y
β

)
+ f

(
y+1

β

)
Θ(t1 − y)

+g
(

y
β

)
[Θ(β t1 −1)+Θ(t2 − y)Θ(1−β t1)]

+g
(

y+1
β

)
Θ(t2 − y)Θ(β t1 −1)

= f
(

y
β

)
+ f

(
y+1

β

)
Θ(t1 − y)

+g
(

y
β

)
Θ(β t1 −1)

+

[
g
(

y
β

)
Θ(1−β t1)+g

(
y+1

β

)
Θ(β t1 −1)

]
Θ(t2 − y)

= f
(

y
β

)
+ f

(
y+1

β

)
Θ(t1 − y)

+g
(

y
β

)
Θ(β t1 −1)

+g
(

y+Θ(β t1 −1)
β

)
Θ(t2 − y)
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Rearranging,

βM ρ1 = f
(

y
β

)
+g
(

y
β

)
Θ(β t1 −1)

+ f
(

y+1
β

)
Θ(t1 − y)

+g
(

y+Θ(β t1 −1)
β

)
Θ(t2 − y)

which clearly has parts that have a Heaviside Θ(tk − y) and other parts that don’t.
Now take a look at the action of M on c1. Recall that

c1 = ν0 (y)−
1
β

ν0

(
y
β

)
Then plugging through,

βM c1 = βν1 −
1
β

[
ν0

(
y

β 2

)
+ν0

(
y+1
β 2

)
Θ(t1 − y)

]
which has a term with Θ(tk − y) and the rest without it. Putting these together,

ν2 = M ν1 = M ρ1 −M c1

The next goal is to repeat the iteration, recursively.

General form The above suggests that the correct Ansatz is to split the repeated
iteration so that

νn = ρn −dn and νn+1 = M νn = M ρn −M dn

with

ρn (y) =
n

∑
k=0

gnk (y)Θ(tk − y)

and

dn (y) =
n−1

∑
k=0

ankνk (y)−
n−1

∑
k=0

fnk (y)Θ(β tk −1)

By definition, gn0 = ν0 for all n.
For n = 0, consistency requires that ρ0 = g00 = ν0 and d0 = 0.
For n = 1, we started with

g11 (y) =
1
β

ν0

(
y+1

β

)
and

a10 = 1 and f10 (y) =
1
β

ν0

(
y
β

)
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After one iteration, it was deduced that

g21 (y) =
1
β

ν0

(
y+1

β

)
+

1
β

f10

(
y+1

β

)
g22 (y) =

1
β

g11

(
y+Θ(β t1 −1)

β

)
and

f20 (y) =
1
β

ν0

(
y
β

)
+

1
β

f10

(
y
β

)
f21 (y) =

1
β

g11

(
y
β

)
and

a20 = a21 = 1

Above looks very regular and entirely manageable. Unrolling the loop obscures some
of this structure, but the regularity does peak through.

g21 (y) =
1
β

ν0

(
y+1

β

)
+

1
β 2 ν0

(
y+1
β 2

)
g22 (y) =

1
β 2 ν0

(
y+β +Θ(β t1 −1)

β 2

)
while

f20 (y) =
1
β

ν0

(
y
β

)
+

1
β 2 ν0

(
y

β 2

)
f21 (y) =

1
β 2 ν0

(
y+β

β 2

)
Iteration step Armed with a hypothesis for the general form, iteration will reveal
how it transforms. Starting with

ρn (y) =
n

∑
k=0

gnk (y)Θ(tk − y)

one gets

βM ρn =
n

∑
k=0

gnk

(
y
β

)
Θ(β tk − y)+

n

∑
k=0

gnk

(
y+1

β

)
Θ(β tk − y−1)Θ(t1 − y)

Making use of

Θ(β tk −1− y) = 0 if β tk −1 < 0
Θ(β tk − y) = 1 if β tk −1 > 0
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together with the identity

1 = Θ(β tk −1)+Θ(1−β tk)

allows

βM ρn =
n

∑
k=0

gnk

(
y
β

)
Θ(β tk − y) [Θ(β tk −1)+Θ(1−β tk)]

+
n

∑
k=0

gnk

(
y+1

β

)
Θ(β tk − y−1)Θ(t1 − y) [Θ(β tk −1)+Θ(1−β tk)]

=
n

∑
k=0

gnk

(
y
β

)
[Θ(β tk −1)+Θ(β tk − y)Θ(1−β tk)]

+
n

∑
k=0

gnk

(
y+1

β

)
Θ(β tk − y−1)Θ(β tk −1)

As before, make use of

β tk = tk+1 if β tk −1 < 0
β tk −1 = tk+1 if β tk −1 > 0

to write

βM ρn =
n

∑
k=0

gnk

(
y
β

)
[Θ(β tk −1)+Θ(tk+1 − y)Θ(1−β tk)]

+
n

∑
k=0

gnk

(
y+1

β

)
Θ(tk+1 − y)Θ(β tk −1)

=
n

∑
k=0

gnk

(
y
β

)
Θ(β tk −1)

+
n

∑
k=0

[
gnk

(
y
β

)
Θ(1−β tk)+gnk

(
y+1

β

)
Θ(β tk −1)

]
Θ(tk+1 − y)

=
n

∑
k=0

gnk

(
y
β

)
Θ(β tk −1)

+
n

∑
k=0

gnk

(
y+Θ(β tk −1)

β

)
Θ(tk+1 − y)

=
n

∑
k=0

gnk

(
y
β

)
Θ(β tk −1)+

n+1

∑
k=1

gn,k−1

(
y+Θ(β tk−1 −1)

β

)
Θ(tk − y)

This clearly preserves the hypothesized general form: aspects of both ρn+1 and dn+1
are visible in the above. The remaining pieces require a look at M dn. Given

dn (y) =
n−1

∑
k=0

ankνk (y)−
n−1

∑
k=0

fnk (y)Θ(β tk −1)
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This is

βM dn = β

n

∑
k=1

an,k−1νk (y)

−
n−1

∑
k=0

fnk

(
y
β

)
Θ(β tk −1)

−
n−1

∑
k=0

fnk

(
y+1

β

)
Θ(β tk −1)Θ(t1 − y)

We’ve arrived at the final form:

νn+1 = M νn = M ρn −M dn

Performing term by term compares,

βgn+1,k = gn,k−1

(
y+Θ(β tk−1 −1)

β

)
for k > 1

βgn+1,1 = gn0

(
y+1

β

)
+

n−1

∑
k=0

fnk

(
y+1

β

)
Θ(β tk −1)

gn+1,0 = ν0

an+1,k = an,k−1 = 1

β fn+1,k = fnk

(
y
β

)
+gnk

(
y
β

)
The above can be checked numerically, and it correctly reproduces the Gelfond–Parry

measure, when ν0 = 1. The result that an,k = 1 is mildly unexpected, given the earlier
calculations. If would appear that there is some re-summation that is possible when
ν0 = 1 but is unavailable when working with the general case.

The above also correctly generates the decaying eigenfunctions associated with the
periodic orbits, when ν0 (y) = y− 1/2. A few of the low-ranked periodic orbits were
checked. In conclusion, the above is correct.

Double-check This general result can be compared to the earlier special-case results
for n = 0,1,2. They agree. They are reposted here, for verification.

For n = 0, g00 = ν0 and f00 = 0.
The general formula above gives the same n = 1 result as previously obtained by

direct iteration:

g11 (y) =
1
β

ν0

(
y+1

β

)
and

f10 (y) =
1
β

ν0

(
y
β

)
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Deduce from general formulas that, for n = 2, that

g22 (y) =
1
β

g11

(
y+Θ(β t1 −1)

β

)
=

1
β 2 ν0

(
y+β +Θ(β t1 −1)

β

)
g21 (y) =

1
β

ν0

(
y+1

β

)
+

1
β

f10

(
y+1

β

)
=

1
β

ν0

(
y+1

β

)
+

1
β 2 ν0

(
y+1
β 2

)
and

f21 (y) =
1
β

g11

(
y
β

)
=

1
β 2 ν0

(
y+β

β 2

)
f20 (y) =

1
β

f10

(
y
β

)
+

1
β

g10

(
y
β

)
=

1
β

ν0

(
y
β

)
+

1
β 2 ν0

(
y

β 2

)
These also agree with earlier special-case results.

Loop unroll Given the general form for νn given above, together with the recur-
sive formula for gnk and fnk, it is desirable to unroll the sequence of recursive steps
into a series summation. This is the basic goal of “analytic algorithmics”: to convert
recursive formulas into series summations. This is similar to the idea of “analytic com-
binatorics”, except that each Θ occuring in the recursive equation can be thought of as
an if-then statement, albeit a very primitive one: Θ(x) is equivalent to “if x > 0 then 1
else 0”. Recursive expressions are conventional in functional programming; loops are
conventional in imperative programming. Loops and recursion are dual to one-another,
explicitly so when tail recursion is possible. The recursive step for gnk is tail-recursive,
so fairly easy to express. The recursive step for fnk generates a summation.

By definition, gn0 = ν0 for all n. It seems that ank = 1 always, so we’ll ignore that
from now on. Then fnn = 0 and generally, fnk = 0 for k ≥ n. Likewise, gnk = 0 for
k > n.

It is convenient to introduce a short-hand for the bit-sequence generated by the
iterated mid-point. The shorthand is

bn = Θ(β tk −1) = dn

(
1
2

)
= εn

(
1
β

)
with εn defined as in eqn 11 and dn as in eqn 23.
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The recursion relations to unroll are

βgn,k (y) = gn−1,k−1

(
y+bk−1

β

)
for k > 1

βgn,1 (y) = ν0

(
y+1

β

)
+

n−2

∑
k=0

bk fn−1,k

(
y+1

β

)
gn,0 (y) = ν0

β fn,k (y) = fn−1,k

(
y
β

)
+gn−1,k

(
y
β

)
Recursing on gnk for k > 1 is straight-forward, as only the arguement is iterated. This
gives

gnk (y) =
1

β k−1 gn−k+1,1

(
y

β k−1 +
k−1

∑
j=1

b jβ
− j

)
Recursing on fnk terminates because fnk = 0 for k ≥ n, leaving only gnk behind. This
gives

fn,k (y) =
n−k

∑
j=1

β
− jgn− j,k

(
y

β j

)
Thus,

gn,1 (y) =
1
β

ν0

(
y+1

β

)
+

n−2

∑
k=0

bk

n−k−1

∑
j=1

β
− j−1gn− j−1,k

(
y+1
β j+1

)

=
1
β

ν0

(
y+1

β

)
+

n−2

∑
k=0

bk

n−k−2

∑
j=0

β
− j−2gn− j−2,k

(
y+1
β j+2

)

=
1
β

ν0

(
y+1

β

)
+

n−2

∑
j=0

β
− j−2

ν0

(
y+1
β j+2

)

+
n−2

∑
k=1

bk

n−k−2

∑
j=0

β
− j−2gn− j−2,k

(
y+1
β j+2

)

=
n−1

∑
j=0

β
− j−1

ν0

(
y+1
β j+1

)
+

n−2

∑
k=1

bk

n−k−2

∑
j=0

β
− j−2gn− j−2,k

(
y+1
β j+2

)
Exchanging the order of summation doesn’t seem to do anything interesting.

gn,1 (y) =
n−1

∑
j=0

β
− j−1

ν0

(
y+1
β j+1

)
+

n−2

∑
j=0

β
− j−2

n− j−2

∑
k=1

bkgn− j−2,k

(
y+1
β j+2

)

=
n−1

∑
j=0

β
− j−1

ν0

(
y+1
β j+1

)

+
n−2

∑
j=0

1
β j+2

n− j−2

∑
k=1

bk
1

β k−1 gn−k− j−1,1

(
y+1

β k+ j+1 +
k−1

∑
i=1

biβ
−i

)
It does not seem reasonable to try to unroll this any further.
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Verification The above gives a more-or-less complete unrolled version of the recur-
sion relations. It can be double-checked by setting ν0 = 1 and looking to see how the
Gelfond–Parry measure arises.

The gnk (y) must be independent of y, and so

gn0 = 1

gn1 =
n−1

∑
j=0

1
β j+1 +

n−2

∑
j=0

1
β j+2

n− j−2

∑
k=1

bk
1

β k−1 gn−k− j−1,1

gnk =
1

β k−1 gn−k+1,1

=
1

β k

[
n−k

∑
j=0

1
β j +

n−k−1

∑
j=0

1
β j+1

n−k− j−1

∑
k=1

bk
1

β k−1 gn−2k− j,1

]

fnk =
n−k

∑
j=1

β
− jgn− j,k

Returning to the form νn = ρn −dn, the above are to be inserted into

ρn (y) =
n

∑
k=0

gnkΘ(tk − y)

= 1+
n

∑
k=1

1
β k−1 gn−k+1,1Θ(tk − y)

and

dn (y) =
n−1

∑
k=0

νk −
n−1

∑
k=0

bk fnk

=
n−1

∑
k=0

νk −
n−1

∑
k=0

bk

n−k

∑
j=1

β
− jgn− j,k

This is opaque, and does not have the structure of earlier results. Lets write out the first
few.

ρ1 = 1+
1
β

Θ(t1 − y)

ρ2 = 1+
β +1

β 2 Θ(t1 − y)+
1

β 2 Θ(t2 − y)

while

d1 = 1− 1
β

d2 = 1+ν1 −
1
β
− 1

β 2 −b1
1

β 2
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So

ν1 = ρ1 −d1 =
1
β
[1+Θ(t1 − y)]

ν2 = ρ2 −d2 =
1

β 2 [1+b1 +Θ(t1 − y)+Θ(t2 − y)]

Bleh. The most obvious mistake that we made was a failure to group the ∑
n−1
k=0 νk with

the gnk where they should have gone. Lets try to amend that mistake now.

Restructure Lets undo the above mistake. Write

νn = σn + cn

and hypothesize that

σn (y) =
n

∑
k=0

hnk (y)Θ(tk − y)

cn (y) =
n−1

∑
k=0

enk (y)Θ(β tk −1)

Iterating gives

βM σn =
n

∑
k=0

hnk

(
y
β

)
Θ(β tk −1)+

n+1

∑
k=1

hn,k−1

(
y+Θ(β tk−1 −1)

β

)
Θ(tk − y)

and

βM cn =
n−1

∑
k=0

enk

(
y
β

)
Θ(β tk −1)+

n−1

∑
k=0

enk

(
y+1

β

)
Θ(β tk −1)Θ(t1 − y)

Comparing term by term gives the recursion relations

βhn+1,k = hn,k−1

(
y+Θ(β tk−1 −1)

β

)
for k > 1

βhn+1,1 = hn0

(
y+1

β

)
+

n−1

∑
k=0

enk

(
y+1

β

)
Θ(β tk −1)

hn+1,0 = 0
h00 = ν0

βen+1,k = enk

(
y
β

)
+hnk

(
y
β

)
for k < n

βen+1,n = hnn

(
y
β

)
The above converges correctly for ν0 = 1 as well as ν0 = y−1/2 for assorted low-order
periodic orbits. So this checks out numerically.
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Unroll Lets unroll the recursion. Easier to rewrite above to eliminate off-by-one:

hn,k =
1
β

hn−1,k−1

(
y+bk−1

β

)
for k > 1

hn,1 =
1
β

n−2

∑
k=0

bken−1,k

(
y+1

β

)
for n > 1

h1,1 =
1
β

ν0

(
y+1

β

)
hn+1,0 = 0

h00 = ν0

en,k =
1
β

[
en−1,k

(
y
β

)
+hn−1,k

(
y
β

)]
en,n = 0

Recursing on hnk for k > 1 is straight-forward, as only the arguement is iterated. This
gives

hnk (y) =
1

β k−1 hn−k+1,1

(
y

β k−1 +
k−1

∑
j=1

b jβ
− j

)
Recursing on enk terminates because enk = 0 for k ≥ n, leaving only hnk behind. This
gives

en,k (y) =
n−k

∑
j=1

β
− jhn− j,k

(
y

β j

)
The sum hn,1 can be left as-is, or expanded; there does not seem to be any benefit to
doing the below, but it can be contemplated:

hn,1 =
1
β

n−2

∑
k=0

bk

n−k−1

∑
j=1

β
− jhn− j−1,k

(
y+1
β j+1

)

=
n−2

∑
k=0

bk

n−k

∑
j=2

1
β j hn− j,k

(
y+1
β j

)
The above pass numerical checks.

Basic checks Check it for n = 1.

βh1,1 = h00

(
y+1

β

)
h1,0 = 0
h00 = ν0

βe1,0 = h00

(
y
β

)
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so

ν1 = σ1 + c1

= h11 (y)Θ(t1 − y)+ e10 (y)

=
1
β

ν0

(
y+1

β

)
Θ(t1 − y)+

1
β

ν0

(
y
β

)
which is correct & verified.

Check for n = 2.

c2 (y) = e20 (y)+b1e21 (y)

e20 =
1

β 2 h00

(
y

β 2

)
and

h21 =
1
β

e10

(
y+1

β

)
=

1
β

h1,1

(
y
β

)
=

1
β 2 ν0

(
y

β 2 +
1
β

)
More unrolling Consolidating the results so far into a short section:

hn,k =
1

β k−1 hn−k+1,1

(
y

β k−1 +
k−1

∑
j=1

b jβ
− j

)
for k > 1

hn,1 =
1
β

n−2

∑
k=0

bken−1,k

(
y+1

β

)
for n > 1

h1,1 =
1
β

ν0

(
y+1

β

)
for y < t1

hn+1,0 = 0
h00 = ν0

en,k =
n−k

∑
j=1

β
− jhn− j,k

(
y

β j

)
for n > k

en,k = 0 for k ≥ n

The second row simplifies after noting the earlier definition

cn (y) =
n−1

∑
k=0

bkenk (y)

and so

hn,1 (y) =
1
β

cn−1

(
y+1

β

)
for n > 1
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which enables

hn,k =
1

β k cn−k

(
y+1
β k +

k−1

∑
j=1

b jβ
− j

)
for n > k,k > 0

The hnk will only ever be used with y < tk so there is no expectation that the argument
is valid for larger y. This can be verified using the identity

tk+1 = β tk −bk

= β
k+1 −

k

∑
j=0

b jβ
k− j

k−1

∑
j=1

b jβ
− j = t1 −

tk
β k−1

So, working backwards,

y+1
β k +

k−1

∑
j=1

b jβ
− j = t1 +

1
β k (y−β tk +1)

≤ 1 when y ≤ tk

Thus, it is appropriate to write

hn,k =
1

β k cn−k

(
t1 +

1
β k (y−β tk +1)

)
for n > k,k > 0

The n = k case needs special attention. It is given by

hk,k =
1

β k−1 h1,1

(
y

β k−1 +
k−1

∑
j=1

b jβ
− j

)

=
1

β k ν0

(
y

β k +
1
β
+

1
β

k−1

∑
j=1

b jβ
− j

)

=
1

β k ν0

(
1− tk − y

β k

)
As before, this is defined only for y ≤ tk.

This can then be plugged into enk to write

enk =
n−k

∑
j=1

β
− jhn− j,k

(
y

β j

)
for n > k,k > 0

=
β k

β n hkk

(
β ky
β n

)
+

n−k−1

∑
j=1

β
− jhn− j,k

(
y

β j

)

=
1

β n ν0

(
1− tk

β k +
y

β n

)
+

n−k−1

∑
j=1

β
− j−kcn−k− j

(
t1 −

β tk −1
β k +

y
β k+ j

)
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Use m = n− k− j or j = n− k−m to write, for n > k and y < tk and k > 0,

enk =
1

β n

[
ν0

(
1− tk

β k +
y

β n

)
+

n−k−1

∑
m=1

β
mcm

(
t1 −

β tk −1
β k +

β my
β n

)]
while, for k = 0

en0 =
1

β n ν0

(
y

β n

)
This allows for the replacement of enk in the expression for cn to provide a recursion
relation for cn only, and no other “external” factors.

Renaming trick There’s two more tricks we can play to simplify things. So far,
we’ve concluded that

hnk (y) =
1

β k cn−k

(
t1 +

1
β k (y−β tk +1)

)
for n > k,k > 0

hk,k (y) =
1

β k ν0

(
1− tk − y

β k

)
hn,0 = 0 for n > 0

But if we define c0 = ν0 then the special case for hkk is not needed. This also means
that we can now use hn0 = 0 always, and so the special casing there goes away, too.

Validation Lets see what happens if ν0 = 1. Then

enk =
1

β n

[
1+

n−k−1

∑
m=1

β
mcm

]
for k > 0

en0 =
1

β n

cn =
n−1

∑
k=0

bkenk

hnk =
cn−k

β k

Rearranging,

cn =
1

β n

[
1+

n−1

∑
k=1

bk

[
1+

n−k−1

∑
m=1

β
mcm

]]
so that

νn (y) = cn +
n

∑
k=1

cn−k

β k Θ(tk − y)

Comparing to the Gelfond-Parry result, we conclude that cn → 1/F as n → ∞, with F
the normalization constant as before:

1 =
1
F

[
∞

∑
k=0

tk
β k

]
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Fibonacci The sequence for cn is takes the form of a generalized Fibonacci sequence.
First, rearrange

cn =
1

β n

[
1+

n−1

∑
k=1

bk

n−k−1

∑
m=0

β
mcm

]
Write αn = β ncn; this gives the beguiling form

αn = 1+
n−1

∑
k=1

bk

n−k−1

∑
m=0

αm

Denote the partial sum as fi = ∑
i
m=0 αm. This implies αi+1 + fi = fi+1

αn = 1+b1 fn−2 +b2 fn−3 + · · ·
fn = 1+ fn−1 +b1 fn−2 +b2 fn−3 + · · ·

For the finite bitsequence b1 = 1 and bk = 0 for k > 1 this is just the Fibonacci sequence,
off-by-one:

( fn +1) = ( fn−1 +1)+( fn−2 +1)

3.6.4 Stacking Generic Functions – Conclusion

To summarize: a recursive series has been obtained for νn = M nν0 for an arbitrary
function ν0 (y) and M the transfer operator.

The proof provided in the stretch–cut–stack subsection goes through with only mi-
nor modifications needed, to obtain this general form. The trick is to track two distinct
travellers: one that travels with Θ(tk − y) and another that travels with the bitsequence
bk = Θ(β tk −1). The general solution has the form

νn (y) = cn (y)+
n

∑
k=1

hnk (y)Θ(tk − y)

cn (y) =
n−1

∑
k=0

bkenk (y)

The functions hnk and enk can be solved for recursively; the recursive relations are
simple enough that they can be rolled up as series summations. These are given by

hnk (y) =
1

β k cn−k

(
t1 −

β tk −1
β k +

y
β k

)
for n ≥ k

which express hnk in terms of the function cn. This is given as a recursive series,
obtained by iterating

enk (y) =
1

β n

[
ν0

(
1− tk

β k +
y

β n

)
+Θ(k)

n−k−1

∑
m=1

β
mcm

(
t1 −

β tk −1
β k +

β my
β n

)]
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The starting point for iteration is c0 = ν0.
The function cn is polynomial if ν0 is, and of the same degree; cn is analytic, if ν0

is, and so on. The function hnk is likewise, on the domain 0 ≤ y ≤ tk; the discontinuities
in νn are entirely due to the Θ(tk − y) term.

The proper calculation of the n → ∞ limit of cn remains a mystery. This is the
primary obstacle to constructing general eigenfunctions from this series.

Verification When ν0 = 1, all three functions cn,enk and hnk become constants. In
this case, cn → 1/F as n→∞, with F the normalization constant from before. Defining
αn = β ncn, the recursion relation takes the curious form

αn = 1+
n−1

∑
k=1

bk

n−k−1

∑
m=0

αm

This is an integer sequence: each αn is an integer, starting with α0 = α1 = 1. This has
the form of a generalized Fibonacci sequence. Denote the partial sum as si = ∑

i
m=0 αm.

This implies αi = si − si−1 and so

αn = 1+b1sn−2 +b2sn−3 + · · ·
sn = 1+ sn−1 +b1sn−2 +b2sn−3 + · · ·

If the orbit is of finite length p, so that bk = 0 for k > p, then this can be recast directly
into generalized Fibonacci form, by defining fn = sn +∑

p
k=1 bk. The recursion relation

is then
fn = fn−1 +b1 fn−2 + · · ·+bp fn−p

For example, the orbit generated by β = ϕ = 1.618 · · · the golden mean has p = 1,b1 =
1 and the sequence is αm = 1,1,2,3,5,8,13, · · · . Finite orbits and generalized Fi-
bonacci sequences will be treated at length in the next chapter. One of the interesting
properties is that β = limn→∞ fn/ fn−1 holds in the general case, and not just for the
golden mean. The bitsequences are self-describing; this is byproduct from the identity
β = ∑

∞
k=0 bkβ−k.

Unfinished aspirations The unfulfilled hope of the above was to obtain an enlight-
ening form in the n → ∞ limit. The sum over piece-wise continuous terms in hnk is
not an issue, since the hnk can be calculated. The stumbling block is the behavior of
cn (y) in the n → ∞ limit. It is clear that if ν0 is holomorphic, then so is cn (y); it has no
discontinuities.

The next section determines that

cn (y)→ const

in the n → ∞ limit, explicitly for ν0 (y) = y. The const is rather opaque. Numerical
work suggests that this holds in general, at least for polynomial ν0 (y).
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3.7 Linear form
Given the above form, apply some blunt technique, and see what happens. The primary
result is that the recursion relation can be specialized to ν0 (y) = y and an explicit
form can be given. The linear part results in generalized Fibonacci sequences being
generated, while the constant term is messy and opaque (but not hard to compute).

3.7.1 Finite orbits

Lets take a look at above, for finite orbits. These are associated with finite sequences
bk that terminate after a certain point.

As above, define αn (y) = β ncn (y) and

snk (y) =
n−k−1

∑
m=1

αm

(
t1 −

β tk −1
β k +

β my
β n

)
Then

φnk (y) = β
nenk (y) = ν0

(
1− tk

β k +
y

β n

)
+Θ(k)snk (y) for k > 0

and

αn (y) =
n−1

∑
k=0

bkφnk (y)

Well, after all the burbling above about Fibonacci, this doesn’t look so promising. Mash
it into one large line

αn (y) = ν0

(
y

β n

)
+

n−1

∑
k=1

bk

[
ν0

(
1− tk

β k +
y

β n

)
+

n−k−1

∑
m=1

αm

(
t1 −

β tk −1
β k +

β my
β n

)]

3.7.2 Linear generator

Plug in ν0 (y) = y into above. Then

n−1

∑
k=1

bkν0

(
1− tk

β k +
y

β n

)
=

(
1+

y
β n

)n−1

∑
k=1

bk −
n−1

∑
k=1

bk
tk
β k

= γn +
δn

β n y

The two constants γn,δn are both bounded: γn < n+ 1 and δn < n. Note that δn is an
integer! The αn will have a similar form:

αn (y) = εn +
ζn

β n y

69



and so plugging through:

αn (y) =
y

β n + γn +
δn

β n y+
n−1

∑
k=1

bk

n−k−1

∑
m=1

[
εm +

ζm

β m

(
t1 −

β tk −1
β k +

β my
β n

)]

= γn +
y

β n

[
1+δn +

n−1

∑
k=1

bk

n−k−1

∑
m=1

ζm

]

+
n−1

∑
k=1

bk

n−k−1

∑
m=1

εm

+
n−1

∑
k=1

bk

(
t1 −

β tk −1
β k

) n−k−1

∑
m=1

ζm

β m

The constant terms are quite the mess, but the linear terms are not so bad; not only is
δn and integer, but so is ζn:

δn =
n−1

∑
k=1

bk

ζn = 1+δn +
n−1

∑
k=1

bk

n−k−1

∑
m=1

ζm

The ζn sequence is identical to the “generalized Fibonacci”, given in the prior section.
This is not immediately apparent, but can be verified numerically. In particular, this
implies that

ζn = 1+
n−1

∑
k=1

bk

n−k−1

∑
m=0

ζm

The index on the last sum runs from m = 0 instead of m = 1. In the asymptotic limit,
the ratio of successive terms converges ζn/ζn−1 → β . This is the generalized form of
the standard Fibonacci series converging to the golden mean.

Lets take a look at the constant terms, now. If the bitstring bk is of finite length,
then both of these stop changing, for n greater than the bitstring length (since bk = 0
from that point on).

γn = δn −
n−1

∑
k=1

bk
tk
β k

εn = γn +
n−1

∑
k=1

bk

[(
n−k−1

∑
m=1

εm

)
+

(
t1 −

β tk −1
β k

) n−k−1

∑
m=1

ζm

β m

]

But, by definition,

tk = β tk−1 −bk−1

= β
k

[
1−

k−1

∑
m=0

β
−m−1bm

]
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Inside the square brackets is a portion the identity 1 = ∑
∞
m=0 bmβ−m−1. The δn cancels,

and so

γn =
n−1

∑
k=1

bk

k−1

∑
m=0

β
−m−1bm

The largest γn and εn occur when β → 2. In these cases, there is a string of bk = 1
up to k = p and then bk = 0 after that. For these cases, the asymptotic limits appear to
be

γn = p−1+O
(
β
−p+2 log p

)
εn = 3β

p−2 [1+O
(
β
−p+2 log p

)]
where, in both cases, the extra log p is a wild guess based on numerics. As before, this
is for n > p, since, for finite bitsequnces, these stop changing once n > p.

Time to wrap it up. The goal of this exercise was to understand the n → ∞ limit of
cn (y). We have achieved that, at least for the case of ν0 (y) = y. The result is that

cn (y) = β
−n

αn (y)

=
1

β n

[
εn +

ζn

β n y
]

In the worst case, εn grows as β n so the constant term is of order 1, but more commonly
small. In the limit, the ratio of succesive generalized Fibonacci terms converge to their
generator, so ζn/ζn−1 → β , and thus, ζnβ−n → 1. As this is suppressed by an additional
term of β−n, the final result is that

cn (y)→ const

for a somewhat impenetrable const that seems to always be less than one. Based on
numerical work with polynomial ν0 (y), this seems to hold in general: only the constant
survives, and the polynomial parts are clobbered by a factor of β−n.

The obvious next step is to make a graph of cn in the large-n limit and see if it looks
like anything interesting. This is shown in the image immediately below.
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A clear, repeating pattern is visible. Asterisk: the above holds, assuming all above
equations were derived correctly, and implemented correctly. This has not been double-
checked. However, the same general magnitude of cn was already seen in unrelated,
independent explorations, so this seems to probably be okay. It’s plausible given other
experience.

3.7.3 Golden Mean

Lets try β = ϕ so that b1 = 1 and all others vanish. Then

αn (y) = φn0 (y)+φn1 (y)

= ν0

(
y

β n

)
+ν0

(
1− t1

β
+

y
β n

)
+ sn1 (y)

= ν0

(
y

β n

)
+ν0

(
1
β
+

y
β n

)
+

n−2

∑
m=1

αm

(
1
β
+

β my
β n

)
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Lets write some of these out.

α1 (y) = φ10 (y) = ν0

(
y
β

)
α2 (y) = ν0

(
y

β 2

)
+ν0

(
1
β
+

y
β 2

)
α3 (y) = ν0

(
y

β 3

)
+ν0

(
1
β
+

y
β 3

)
+α1

(
1
β
+

y
β 2

)
= ν0

(
y

β 3

)
+ν0

(
1
β
+

y
β 3

)
+ν0

(
1

β 2 +
y

β 3

)
α4 (y) = ν0

(
y

β 4

)
+ν0

(
1
β
+

y
β 4

)
+α1

(
1
β
+

y
β 3

)
+α2

(
1
β
+

y
β 2

)
= ν0

(
y

β 4

)
+ν0

(
1
β
+

y
β 4

)
+ν0

(
1

β 2 +
y

β 4

)
+ν0

(
1

β 3 +
y

β 4

)
+ν0

(
1
β
+

1
β 3 +

y
β 4

)
Lots of heat, very little light. The above does make clear that if ν0 is a polynomial of
degree p then so are all of the αn. Likewise, if ν0 is holomorphic/meromorphic, then
so are the αn. There are no discontinuities in the αn; the piece-wise parts are all in the
hnk sum.

Try again. Assume an analytic series, or at least a polynomial.

ν0 (x) =
∞

∑
i=0

wixi and αn (x) =
∞

∑
i=0

unixi

Then

ν0 (x+ y) =
∞

∑
i=0

wi (x+ y)i

=
∞

∑
i=0

wi

i

∑
j=0

(
i
j

)
x jyi− j

So

αn (x) = ν0

(
y

β n

)
+ν0

(
1
β
+

y
β n

)
+

n−2

∑
m=1

∞

∑
i=0

umi

(
1
β
+

β my
β n

)i

∞

∑
i=0

uniyi =
∞

∑
i=0

wi

(
y

β n

)i

+
∞

∑
i=0

wi

i

∑
j=0

(
i
j

)(
y

β n

) j 1
β i− j +

n−2

∑
m=1

∞

∑
i=0

umi

i

∑
j=0

(
i
j

)(
β my
β n

) j 1
β i− j

Quite the mess. Equating term by term,

unp = wp
1

β pn +
∞

∑
i=p

wi

(
i
p

)
1

β pn
1

β i−p +
n−2

∑
m=1

∞

∑
i=p

umi

(
i
p

)
β mp

β np
1

β i−p

=
1

β pn

[
wp +

∞

∑
i=p

(
i
p

)
1

β i−p

[
wi +

n−2

∑
m=1

umiβ
mp

]]
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Yikes! Even if we assume that quintic terms and higher are zero, i.e. that wp = 0 for
p > 4, this does not simplify in any meaningful way. Mind you, the above is for the
special case of β = ϕ . The general case is slightly more complex, but not much more.

Lets try ν0 (y) = y so that w1 = 1 and all other wi = 0. Given α1 (y) = ν0 (y/β )
conclude u10 = 0 and u11 = 1 and all other u1p = 0. Then

u2,p =
1

β 2p

[
wp +

∞

∑
i=p

(
i
p

)
1

β i−p wi

]
u2,0 =

w1

β i

u2,1 =
2w1

β 2

and all other u2,p = 0. Next,

u3,p =
1

β 3p

[
wp +

∞

∑
i=p

(
i
p

)
1

β i−p [wi +u1iβ
p]

]

=
1

β 3p

[
wp +

(
1
p

)
1

β 1−p [w1 +u11β
p]

]
for p ≤ 1

u3,0 =
1
β
[w1 +u11]

u3,1 =
1

β 3 [2w1 +u11β ]

and u3,p = 0 for all other p. Recursively, unp = 0 for all p> 1, but we knew this already.
Thus, all we really have is

un0 =
n−2

∑
m=1

um0 +
1
β

n−2

∑
m=1

um1

un1 =
1

β n

[
2w1 +

n−2

∑
m=1

um1β
m

]
Oof. It’s doable, but icky.

3.7.4 Integral constraints

Compute the integral
∫

cn, doe it reveal anything?∫ 1

0
cn (y)dy =

n−1

∑
k=0

bk

∫ 1

0
enk (y)dy

where∫ 1

0
enk (y)dy =

1
β n

[∫ 1

0
ν0

(
1− tk

β k +
y

β n

)
+Θ(k)

n−k−1

∑
m=1

β
m
∫ 1

0
cm

(
t1 −

β tk −1
β k +

β my
β n

)]

=
∫ q

p
ν0 (x)dx+Θ(k)

n−k−1

∑
m=1

β
m
∫ s

r
cm (x)dx
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where p = 1− tkβ−k and q = p+ β−n and r = t1 − (β tk −1)β−k and s = r + β m−n.
Plugging in (for example) ν0 (y) = y does not look promising.

3.8 Coherent Disk
Using the same trick as further below (sorry for out-of-order presentation), we can
add a complex z to the mix. Cut-n-pasting from up above, a sequence of functions
satisfying M µn = λ µn+1 are given by

µn (y) = c′n (y)+
n

∑
k=1

h′nk (y)Θ(tk − y)

c′n (y) = ν0 (y)+
1

(λβ )n

n−1

∑
k=1

bk

[
ν0

(
1− tk

β k +
y

β n

)
+

n−k−1

∑
m=1

(λβ )m c′m

(
t1 −

β tk −1
β k +

β my
β n

)]

which is identical to before but prime is used to indicate the presence of the λ in the
eqns. The functions h′nk are given by

h′nk (y) =
1

(λβ )k c′n−k

(
t1 −

β tk −1
β k +

y
β k

)
for n ≥ k

and iteration starts with c′0 = ν0.

3.8.1 Verify

For ν0 = 1 we should get old results. This implies there no y dependence in c′n and so

c′n = ν0 +
1

(λβ )n

n−1

∑
k=1

bk

[
ν0 +

n−k−1

∑
m=1

(λβ )m c′m

]

and

µn (y) = c′n +
n

∑
k=1

1

(λβ )k c′n−kΘ(tk − y)

The Parry–Gelfond result is obtained by setting λ = 1 so that

lim
n→∞

c′n +
n

∑
k=1

1
β k c′n−kΘ(tk − y) =

1
F

[
ν0 +

∞

∑
k=1

1
β k Θ(tk − y)

]
Comparing term by term, this is possible only if c′n → 1/F . A quick numeric check
confirms this is the case. So everything looks OK, here.

3.8.2 Remarks

There is room for confusion, here. Lets clear the air. The above generates a sequence
µn for any value of β and λ , satisfying M µn = λ µn+1 by construction. What happens
if λ ̸= 1? Well, selecting ν0 = 1 it appears that λ µn+1 ≈ µn so that λ nµn → ν in the
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limit. That is, each iterate gets closer and closer to Gelfond–Parry while also blowing
up geometrically. There is no free lunch.

This result follows, because M preserves volume. That is,
∫

µn =
∫

M µn =
λ
∫

µn+1 so if
∫

µn ̸= 0 then its no surprise that there is a geometric increase with each
application. This is a rediscovery that the decaying eigenfuncs must be orthogonal to
the invariant measure.

The next step is very interesting. A report of numeric observations. Fix β = 1.6.
Then:

• If µ0 (x) = x− 1/2, then λ nµn converges to ≈ −0.0869229ν with ν the Gel-
fond–Parry invariant measure. This is independent of λ . This is not a surprise;
the result should be independent of λ , as it is just a rescaling.

• If µ0 (x) = x − 1/2+ 0.0869229 and λ = 1/β , then the µn appear to bounce
around ergodically, maintaining a bounded norm. Three behaviors are apparent:∫

µn = const≈ 0.2767. The L1 and L2 norms bounce around but remain bounded:
0.3 <

∫
|µn| < 0.8 and 0.1 <

∫
|µn|2 < 1.0, and each iterate is approximately

orthogonal to the prior one:
∫

µnµn+1 ≈ 0. Here,
∫

f =
∫ 1

0 f (x)dx is just short-
hand notation.

• If µ0 (x) = x− 1/2+ 0.0869229 and λ = eiφ/β and n is held fixed while the
phase φ real is varied indicates each µn at different φ is just a scaled copy of the
φ = 0 version.

• If µ0 (x) = x−1/2+0.0869229 and λ ̸= 1/β then λ nβ nµn are exactly equal to
above. This is independent of the choice of λ .

The λ -independence just says that λ is a red herring, having nothing to do with any-
thing. It was supposed to be a calculational convenience, but serves mostly to confuse
the issue. The code base rescales by β anyway, and that is all that is needed. Yellow
flag: continue use of λ only with caution.

This leaves two questions: what is this magic constant 0.0869229? What is this
ergodic bouncing? The second question has a relatively simple (but interesting) answer:
µn has converged to a superposition of multiple complex eigenfunctions, all having an
eigenvalue with the same norm.

Is it a single complex eigenvalue? No. Assume a single complex eigenvalue. As-
sume M (ψ + iχ)= λeiφ (ψ + iχ) for unknown ψ,χ,φ . This implies M ψ = λ (ψ cosφ −χ sinφ).
Assume

∫
ψχ = 0. Then

∫
ψM ψ = λ cosφ

∫
ψ2. Assume µn → ψ . Then

∫
µnM µn =∫

µnµn+1 = λ cosφ
∫

µ2
n+1. We already know that λ = 1/β so estimate cosφ ≈ β

∫
µnµn+1/

∫
µ2

n+1.
But this is not supported by numerics.

Did we make a mistake with assuming µn →ψ? Assume instead that µn →K (ψ cosθ +χ sinθ)
for some unknown normalization K and mixing angle θ . Then

µn+1 = λK (ψ cos(θ −φ)+χ sin(θ −φ))

and
∫

µnµn+1 = K2λ cosφ after assuming that
∫

ψ2 =
∫

χ2 = 1 and
∫

ψχ = 0. So
the corrected hypothesis does not rescue the conclusion that this is not due to a single
complex eigenvalue.
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Is it a mixture? Yes. Assume there are multiple eigenfunctions M (ψn + iχn) =
1
β

eiφn (ψn + iχn) so that all have |λ | = 1/β but differing in phase φn. Assume that
µn → ∑k akψk. Then further iteration will just tangle the phase into each of these into
a mess. That is,

M µn = µn+1 =
1
β

∑
k

ak (ψk cosφk −χk sinφk)

and so
∫

µnM µn =
∫

µnµn+1 = 1
β

∑k a2
k cosφk. Hmm. Well, that is a constant, inde-

pendent of n but the numerics are not converging to a constant here. Are the numerics
suffering from rounding errors? Possibly. Probably?! Since cancellation of Fibonacci-
scale terms is required, this destroys precision after not very many (a dozen) iterations.

Conclusion: the result of iteration is a mixture. The mixture looks like an ergodic
bouncing around. The phase angle φk can be called the “energy” of the eigenvalue, so
that, up to rescaling, the time evolution is unitary. The “ergodic” sequence is just a sum
of unitarily-evolving eigenfunctions. Huh. Wow!

3.8.3 General

Then µn → µ with M µ = λ µ if |µn+1 −µn| → 0. Write this out.

µn+1 −µn = c′n+1 − c′n +h′n+1,n+1Θ(tn+1 − y)+
n

∑
k=1

[
h′n+1,k −h′nk

]
Θ(tk − y)

We need several parts, here.

c′n+1 − c′n =
1

(λβ )n+1

n

∑
k=1

bk

[
ν0

(
1− tk

β k +
y

β n+1

)
+

n−k

∑
m=1

(λβ )m c′m

(
t1 −

β tk −1
β k +

β my
β n+1

)]

− 1
(λβ )n

n−1

∑
k=1

bk

[
ν0

(
1− tk

β k +
y

β n

)
+

n−k−1

∑
m=1

(λβ )m c′m

(
t1 −

β tk −1
β k +

β my
β n

)]

=
1

(λβ )n+1 bnν0

(
1+

y−β tn
β n+1

)
+

1
(λβ )n

n−1

∑
k=1

bk

[
1

λβ
ν0

(
1− tk

β k +
y

β n+1

)
−ν0

(
1− tk

β k +
y

β n

)]

+
1

(λβ )n

n−1

∑
k=1

bk

[
1

λβ

n−k

∑
m=1

(λβ )m c′m

(
t1 −

β tk −1
β k +

β my
β n+1

)]

− 1
(λβ )n

n−1

∑
k=1

bk

[
n−k−1

∑
m=1

(λβ )m c′m

(
t1 −

β tk −1
β k +

β my
β n

)]
while

h′n+1,n+1 (y) =
1

(λβ )n+1 ν0

(
t1 +

1
β n+1 +

y−β tn+1

β n+1

)
Blech.
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3.9 Inverse Problem
The results above and below suggest that the correct object of study is N = M − I
so that N ν = 0 is in the kernel. Note that N is no more singular than M since M
already has a large and extensive kernel. Thus N just has some more.

Two questions now arise: first, is N the pushforward of something? What is that
something? Second question: what happens if this process is repeated? We wish to
arrive at an N where the only only eigenfunctions were those that were on the 1/β

ring. In other words, N →U for some unitary U .
This engenders a third set of questions: is such a U the pushforward of something?

If so, what? Then, what is the spectrum of U? Interpreting the phases as “energies”,
what is the corresponding Hamiltonian H satisfying U = exp iH?

3.10 Analytic Gelfond-Parry function
The technique above can be repeated verbatim for a “rotated” or “coherent” function

νβ ;z (y) =
∞

∑
n=0

zn Θ(tn − y)
β n (21)

for a given complex-valued z. No changes are required, and the result can be read off
directly:

[
M νβ ;z

]
(y) =

νβ ;z (y)
z

− 1
z
+

∞

∑
n=0

zn Θ(β tn −1)
β n+1

=
νβ ;z (y)

z
+C (β ;z)

with C (β ;z) being a constant independent of y. If there are values of β and/or z at
which C (β ;z) = 0, then this becomes the eigenequation for M .

The eigenfunction for L is the same, up to rescaling of y 7→ βx/2. Recycling
notation slightly, write

vβ ;z (x) =
∞

∑
n=0

dn (x)
β n zn (22)

where the dn (x) are exactly the same digits as defined by Parry, just rescaled for the
beta-shift. That is,

dn (x) = εn

(
2x
β

)
= Θ

(
β

2
tn − x

)
= Θ

(
T n
(

β

2

)
− x
)
=

{
1 if x < T n

(
β

2

)
0 otherwise

(23)

where T the beta-shift map of eqn 4 and eqn 9 is used. The iterated end-point becomes
the iterated midpoint:

tn (1) =
2
β

T n
(

β

2

)
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Holding both β and x fixed, the summation is clearly convergent (and holomorphic
in z) for complex numbers z within the disk |z| < β . The eigenequation has the same
form: [

Lβ vβ ;z
]
(x) =

1
z

vβ ;z (x)+C (β ;z)

where C (β ;z) is a constant independent of x. Numeric verification reveals we were a
bit glib: C (β ;z) is a constant for x ≤ β/2 and is zero otherwise! (This is normal; L
was defined in such a way that it is always exactly zero for x > β/2.)

The interesting limit is where |z| → β and so its convenient to re-express C in terms
of ζ = z/β , so that everything is mapped to the unit disk. With some rearrangements,
one obtains

E (β ;ζ )≡ ζ βC (β ;ζ β ) =−1+ζ

∞

∑
n=0

ζ
ndn

(
1
2

)
(24)

Given that dn (1/2) = Θ(β tn −1), the above can be recognized as the rotated/coherent
form of eqn 20 in the n → ∞ limit. The primary task is to characterize the zeros of
E (β ;ζ ). This is a straight-forward sum to examine numerically; results will be pre-
sented in the section after the next.

3.11 Analytic ergodics
This section proposes that the entire β -subshift can be tied together with a single holo-
morphic equation. The holomorphic equation effectively provides a continuum (i.e.
uncountable number) of distinct relationships between different parts of the subshift.
This can be interpreted either as a form of interaction across the subshift, or as a kind
of mixing. Given the nature of the relationship, the moniker of “fundamental theorem
of analytic ergodics” is an amusing name to assign to the result.

The constant term can be independently derived through a different set of manipu-
lations. Explicitly plugging in eqn 22 into the transfer operator yields

C (β ;z) =
[
Lβ vβ ;z

]
(y)−

vβ ;z (y)
z

=
∞

∑
n=0

zn

β n

[
1
β

[
dn

(
y
β

)
+dn

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)
− 1

z
dn (y)

]
Replacing z by ζ = z/β gives

E (β ;ζ ) =ζ βC (β ;ζ β )

=
∞

∑
n=0

ζ
n
[

ζ

[
dn

(
y
β

)
+dn

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)
−dn (y)

]
This is holomorphic on the unit disk |ζ |< 1, as each individual dn is either zero or one;
there won’t be any poles inside the unit disk. Note that dn (y) = 0 for all y > β/2, and
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so one may pull out the step function to write

E (β ;ζ ) =
∞

∑
n=0

ζ
n
[

ζ dn

(
y
β

)
+ζ dn

(
y
β
+

1
2

)
−dn (y)

]
Θ

(
β

2
− y
)

confirming the earlier observation that E (β ;ζ ) vanishes for all y > β/2.
The bottom equation holds without assuming that E (β ;ζ ) is independent of y.

However, we’ve already proven that it is; and so a simplified expression can be given
simply by picking a specific y. Setting y = 0, noting that dn (0) = 1 and canceling
terms, one obtains eqn. 24 again.

Staring at the right-hand side of the sum above, it is hardly obvious that it should
be independent of y. In a certain sense, this is not “one equation”, this holds for a
continuum of y, for all 0 ≤ y ≤ 1. It is an analytic equation tying together the entire
subshift. For each distinct y, it singles out three completely different bit-sequences out
of the subshift, and ties them together. It is a form of mixing. Alternately, a form of
interaction: the bit-sequences are not independent of one-another; they interact. This
section attempts to make these notions more precise.

The tying-together of seemingly unrelated sequences seems somehow terribly im-
portant. It is amusing to suggest that this is a kind of “fundamental theorem of analytic
ergodics”.

For such a claim, it is worth discussing the meaning at length, taking the effort to
be exceptionally precise and verbose, perhaps a bit repetitive. Equation 4 defined a
map, the β -shift. Equation 5 defined a bit-sequence, the β -expansion of a real number
0 ≤ x ≤ 1, where equation 6 is the definition of the β -expansion. The set of all such bit-
sequences defines the shift. To emphasize this point, its best to compare side-by-side.
Copying equation 5, one bitsequence records the orbit of x relative to the midpoint:

kn (x) =

{
0 if 0 ≤ T n

β
(x)< 1

2

1 if 1
2 ≤ T n

β
(x)≤ 1

while a different bitsequence records the orbit of the midpoint, relative to x:

dn (x) =

{
1 if x < T n

(
β

2

)
= T n+1

( 1
2

)
0 otherwise

The iterations are running in opposite directions; this is as appropriate, since the the
transfer operator was a pushforward.

It is useful to return to the language of sigma algebras and cylinder sets, as opposed
to point dynamics. Recall that the Borel algebra B was defined as the sigma algebra,
the collection of all cylinder sets in the product topology of {0,1}ω . A subshift is
a subset S ⊂ B together with a map T : S → S that lops off the leading symbol
of a given cylinder set but otherwise preserves the subshift: TS = S . The inverted
map T−1 is a pushforward, in that it defines the transfer operator, a linear operator
LT : F → F on the space F of all functions f : S → R; explicitly, it is given by
LT : f 7→ f ◦T−1. Insofar as the dn arose in the exploration of the transfer operator, it
is not surprising that the shift is acting “backwards”.
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The problem with the language of point dynamics is that one cannot meaningfully
write T−n (x) for a real number, a point x, at least, not without severe contortions that
lead back to the Borel algebra. Not for lack of trying; the T−n (x) is called the “Julia
set” (to order n) of x: it is the preimage, the set of all points that, when iterated, converge
onto x.

Can the analytic relation be restated in terms of cylinder sets? Yes, and it follows
in a fairly natural way. The first step is to extend dn to a map dn : S → [0,1]. Let
µ : B → [0,1] be the Bernoulli measure. Using the Bernoulli mapping 3, the interval
[0,T n (β/2)] maps to some cylinder; call it ∆n. Then, given some cylinder A ∈ S ,
define

dn (A) = µ (A∩∆n)

The rotated (pre-)measure is extended likewise:

ν (A) =
∞

∑
n=0

ζ
ndn (A)

with ζ = z/β as before, recovering the Parry measure by setting z = 1. The Parry
measure should be invariant under the action of T−1 : S → S , and otherwise yield
eqn 24.

Let’s check. The proof will mirror the one of the previous section. Here, it is con-
venient to use the β -transform t instead of the β -shift T . This is primarily a conceptual
convenience; the subshift is more easily visualized in terms of the mod 1 map. Other-
wise, the same notation is used, but rescaled, so that ∆n is the cylinder corresponding
to the interval [0, tn (1)].

Recall that for every A ∈ B and every y ∈ A, one will find that y/β ∈ t−1 (A) and,
whenever y ≤ β − 1 that also (y+1)/β ∈ t−1 (A). Thus, t−1 (A) naturally splits into
two parts: the cylinder that maps to [0,1/β ], call it D and the complement D.

The pushforward action is then

ν
(
t−1 (A)

)
=

∞

∑
n=0

ζ
n
µ
(
∆n ∩ t−1 (A)

)
=

∞

∑
n=0

ζ
n [

µ
(
∆n ∩D∩ t−1 (A)

)
+µ

(
∆n ∩D∩ t−1 (A)

)]
Two distinct cases emerge. When tn (1) < 1/β then one has that ∆n ∩D = ∅. Thus,
the second term can be written as

µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
1
β

µ (∆n+1 ∩A)

where the second line follows from the first by linearity, and that D selected out one
of the two branches of t−1 (A). Meanwhile, when tn (1) > 1/β , then D ⊂ ∆n so that
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D∩∆n = D. Thus, the first term splits into two:

Θ

(
tn −

1
β

)
µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
µ
(
D∩ t−1 (A)

)
= Θ

(
tn −

1
β

)
1
β

µ (A)

while

Θ

(
1
β
− tn

)
µ
(
∆n ∩D∩ t−1 (A)

)
= Θ

(
1
β
− tn

)
1
β

µ (∆n+1 ∩A)

Reassembling these pieces and making use of ∆0 ∩A = A one gets

ν
(
t−1 (A)

)
=

∞

∑
n=0

ζ n

β

[
µ (A)Θ

(
tn −

1
β

)
+µ (∆n+1 ∩A)

]
=

1
z

ν (A)− µ (A)
z

+µ (A)
∞

∑
n=0

ζ n

β
Θ

(
tn −

1
β

)
=

1
z

ν (A)+
µ (A)

z
E (β ;z)

with the constant term as before, in eqn 24:

E (β ;z) =−1+ζ

∞

∑
n=0

ζ
n
Θ

(
tn −

1
β

)
=−1+ζ

∞

∑
n=0

ζ
ndn

(
1
2

)
As before, one has for z = 1 that E (β ;1) = 0 and so ν ◦ t−1 = ν is indeed the measure
invariant under t−1. Other eigenvalues can be found for those values of z for which
E (β ;z) = 0. The task at hand is then to characterize E (β ;z).

3.12 Exploring E (β ;z)

The function is easily explored numerically. It is clearly convergent in the unit disk
|ζ | < 1 and has no poles in the disk. For almost all β , there seem to be a countable
number of zeros within the disk, accumulating uniformly on the boundary as |ζ | → 1.
An example is shown in figure 15. The notion of “uniformly” will be made slightly
more precise in the next section, where it is observed that, for certain special values of
β , the bit-sequence dn

( 1
2

)
is periodic, and thus is a polynomial. When it is polynomial,

there are a finite number of zeros (obviously; the degree of the polynomial), which are
distributed approximately uniformly near the circle |ζ |= 1. As the degree of the poly-
nomial increases, so do the number of zeros; but they remain distributed approximately
evenly. In this sense, the limit of infinite degree seems to continue to hold.

A handful of selected zeros are listed in the table below. The numbers are accurate
to about the last decimal place.
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Figure 14: Typical Eigenfunction
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A typical eigenfunction vβ ;z (x) solving Lβ v = λv for β = 1.2. This is the eigen-
function is as defined in eqn 22. This eigenfunction corresponds to the zero z =
1.1342exp iπ0.1799 of E (β ;z), alternately of C (β ;z), as defined in eqn 24. The eigen-
value is λ = 1/z. Since the eigenvalue is complex, so is the eigenfunction. The real
and imaginary parts are paired in a way that vaguely resembles sine and cosine; such
phased offsets are generic.

β z |z| 1/z
1.8 -1.591567859 1.59156785 -0.6283112558
1.8 -1.1962384 +i 1.21602223 1.70578321 -0.41112138 - i 0.41792066
1.8 0.99191473 +i 1.44609298 1.75359053 0.32256553 -i 0.47026194
1.6 -1.06365138 +i 1.00895989 1.46606764 -0.49487018 -i 0.46942464
1.4 0.55083643 +i 1.17817108 1.30057982 0.32564816 -i 0.69652119
1.2 0.95788456 +i 0.60733011 1.13419253 0.74462841 -i -0.47211874

These are not particularly meaningful numbers; they just give a flavor for some
locations of eigenvalues. Given a zero, the corresponding eigenfunction is also very
easily computed. A typical eigenfunction is shown in figure 14; this is for the zero
listed in the last row of the table above. Although it is unlike the figure 1, in that it is
not strictly decreasing, it does have the same general plateau-like regions. Note that all
such eigenfunctions are bounded and generally, differentiable-nowhere.

As the zeros accumulate onto the circle |ζ | → 1, there appears to be no way to
holomorphically continue the function E (β ;z) outside of the unit circle. This indicates
that there is a lower bound on the possible eigenvalues that can be reached via the
eigenfunctions of eqn 22.

The apparent reason for this is that the coherent state was constructed as a deformed
version of the repeated iteration of ν0 = 1 a constant, as described in earlier sections.
Iterating on ν0 (y) a polynomial appears to generate eigenfunctions with eigenvalue
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Figure 15: Disk of E (β ;z)

The above shows a visualization of E (β ;z) for β = 1.6 in the complex ζ = z/β plane.
The disk consists of all ζ values with |ζ | ≤ 1. The plot is a phase plot, showing the ar-
gument argE (β ;z)∈ [−π,π]. The color-coding of blue-black puts the phase just above
−π , green near 0, and red just below +π . Locations where the phase wraps around
counter-clockwise (right-handed) are zeros of E (β ;z); this follows from Cauchy’s
principle. The most prominent zero at the right-hand side of the image corresponds
to z = 1, located at ζ = 1/β so well inside the circle. This corresponds to the Gel-
fond–Parry invariant measure. Other zeros are seen at the end of black-red whiskers,
wrapping through green. These accumulate at the ζ = 1 boundary; in general, there
are a countable number of such zeros. The corresponding eigenvalues are located at
λ = 1/z = 1/βζ , so the accumulation ring of zeros occurs at |λ | = 1/β . A different
presentation of the same information can be found in figure 16.
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bounded by 1/β p for a polynomial of degree p. One explicit example, generated by
a parabola, is given in a much later section. A simple, direct construction remains
elusive.

3.12.1 Convergence

The analytic structure of the ergodic disk

E (β ;z) =−1+ζ

∞

∑
n=0

bnζ
n

is daunting. Clearly, when the bitsequence bn is not finite, then there is a pole at ζ = 1.
There is also a pole at ζ = −1 unless the number of even and odd bits asymptotically
cancel out, and then the series is conditionally convergent.

More generally, the series will be conditionally convergent for ζ = eiφ only when
the bitsequence bn is ultimately periodic. In this case, ζ = eiφ that are roots of unity
can be arranged so that they precisely cancel for each period.

For ergodic bitsequences bn, it is not clear how to formulate a proper conjecture for
the sum.

3.12.2 Jentzsch’s theorem

Relevant to the present case is Jentzch’s theorem (1914), which states that if

g(z) = 1+a1z+ · · ·+anzn + · · ·

has a radius of convergence of one, then every point on the unit circle is a cluster-point
of zeros of partial sums

sn (z) = 1+a1z+ · · ·+anzn

A proof is given in [30], which generalizes to polynomial sequences that converge on
arbitrary regions of the complex plane (having positive capacitance).

Perhaps a simpler statement is that this follows from Rouché’s theorem, in that
1 − zn will have n roots, located at the roots of unity, and all the other terms only
perturb the location of the roots.

3.13 Unitary Component
Do the zeros merely accumulate onto the circle |ζ | → 1, or are any of them exactly on
|ζ |= 1? If they are exactly on |ζ |= 1, then M =N ⊕U for some unitary U = exp iH.

Lets plug through and see what happens. We had

E (β ;z) =−1+ζ

∞

∑
n=0

bnζ
n

with bn = dn
( 1

2

)
due to notational confusion. Write z = ei2πφ/β so that ζ = ei2πφ .

Then the task is to find solutions

1 = ei2πφ
∞

∑
n=0

bnei2nπφ (25)
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for real φ , if any. From general principles, such a φ must be irrational, as otherwise oth-
erwise, it would be a root of unity, and the sum would diverge whenever the sequence
bn is infinite. For finite-length sequences, the above corresponds to the usual polyno-
mials, pn

(
e−i2πφ/β

)
= 0 and we already know that these do not have any solutions for

real φ .
Periodic sequences also cannot have solutions; these reduce to the case of the finite

polynomials. For example, b2n = 1 and b2n+1 = 0 reduces the above to ζ−2−ζ−1−1=
0 which is just the usual ζ = 1/β which has no solutions for |ζ | = 1. All periodic
sequences work this way. What about the ultimately-periodic sequences, which have
a chaotic initial segment, followed by a periodic tail? Those won’t work either. They
are described by a polynomial in ζ and in order for that polynomial to have a solution
|ζ | = 1, it would have to have a factor of ζ k − 1 for some integer k. But we already
know that the ultimately periodic sequences do not have such a factor.

That leaves the possibility that only the chaotic bit-sequences might have such so-
lutions. The prospects look dim. The periodic sequences are dense in β and the reals
are seperable, and so behavior is dominated by the periodic sequences; this is a generic
theorem; what is it’s name? The theorem is that when something is dense in a seperable
space, then the thing that is dense governs the rest. But this theorem can be violated;
clearly, the Minkowski Question Mark violates this theorem. Hmm. Confusing. I’ve
got forgotten theorems mixed up.

3.13.1 Existence

How do we go about finding solutions to the above?
Well, the bitsequence bn must belong to the infinite comb (below). What’s more is

that this is a Fourier transform of the infinite comb. What’s more is that the periodic
orbits are “almost solutions”, in that they do accumulate onto the circle 1/β without
actually lying on the circle. So the limit is going in the correct direction for such solu-
tions to exist. We must now prove that, for a valid infinite sequence bn, the truncated
finite sequence b̌k

n has roots rk → ei2πφ/β for a fixed φ . Hmm. But it is clear that there
are countably many such roots. As the bitsequence lengthens, the number of roots in-
creases by one; each root approaches the circle and so approaches a limit point. These
limit poaints are dense on the unit circle. The limit points are the desired φ . So this is
the proof sketch. QED.

Here, the truncated finite sequence is b̌k
n = bn for k < n and b̌k

k = 1 for k = n and
b̌k

n = 0 for k > n. The condition that b̌k
k = 1 for k = n arises from the bracketing

condition on the polynomials: the final bit must always be one.
As a result, we now have a countable number of φ satsifying eqn 25 and these

are dense on the unit circle. Based on general experience, these will be uniformly
distributed. We know that φ = 0 is not in the set. We don’t have an explicit equation
giving valid φ other than the vague presecription of “find roots numerically and take
limits numerically” which is unsatisfying. In particular, we don’t have a Hamiltonian,
yet; we just have a proof that it exists. What is the Hamiltonian?
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3.13.2 Estimates

Given a sequence bn truncated to length k, there will be a convergent bracket ℓ Z⇒m⇐\ ρ
lead by the polynomial pm such that

2m+1 = b0b1b2 · · ·bk (26)

pm (x) = xk+1 −
k

∑
n=0

bnxk−n

Ek (ζ ) =−1+ζ

k

∑
n=0

bnζ
n =−ζ

k+1 pm

(
1
ζ

)
Suppose that ζk is a complex root, so that Ek (ζk) = 0. We now want the estimate
ζk+1 = ζk (1+ εk) where it is assumed that εk is small. Well, Ek+1 (ζ ) = −ζ k+2 pm′

where m′ = 2m if bk+1 = 0 else m′ = 2m+1. This follows from eqn 31 which takes the
form

pm′ (x) =

{
x(pm (x)+1)−1 for bk+1 = 1
xpm (x)−1 for bk+1 = 0

Thus

0 = pm′

(
1

ζk+1

)
=

1
ζk+1

(
pm

(
1

ζk+1

)
+bk+1

)
−1

≈ 1
ζk

(1− εk)

(
pm

(
1
ζk

(1− εk)

)
+bk+1

)
−1

≈ 1
ζk

(1− εk)

(
−εk p′m

(
1
ζk

)
+bk+1

)
−1

≈−εk

(
1
ζk

p′m

(
1
ζk

)
+bk+1

)
+

1
ζk

bk+1 −1

so that

εk ≈
bk+1 −ζk

p′m
(

1
ζk

)
+ζkbk+1
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where p′m denotes the derivative:

p′m (x) =
d
dx

(
xk+1 −

k

∑
n=0

b̌nxk−n

)

= (k+1)xk −
k−1

∑
n=0

b̌n (k−n)xk−n−1

= k

(
xk −

k−1

∑
n=0

b̌nxk−n−1

)
+ xk +

k−1

∑
n=1

b̌nnxk−n−1

=
k
x

(
xk+1 −

k

∑
n=0

b̌nxk−n + b̌k

)
+ xk

(
1+

k−1

∑
n=1

b̌nnx−n−1

)

=
k
x
(pm (x)+1)+ xk

(
1+

k−1

∑
n=1

bnnx−n−1

)

Above b̌ is used instead of b because b̌ is appropriate for the convergent. Note that
b̌n = bn for n < k while b̌k = 1 so that the series is correctly terminated to get a proper,
valid polynomial.

Thus

p′m

(
1
ζk

)
= kζk +

1
ζ k

k

(
1+

k−1

∑
n=1

bnnζ
n+1
k

)
Keep in mind that |ζk| ≈ 1, so it is almost pure phase. So indeed, εk is small, but it is
hard to tell which way it is pointing. We want it to be pointing mostly radially outward.

So this isn’t going anywhere.
The other issue is there’s no insight into where new zeros are sprouting. Time for

numerics.

3.13.3 Graphs

A “typical” example of the complex roots of Ek (ζ ) is shown in figure 16. The value of
β is held fixed at β = 1.6; this generates an infinite sequence of bn that can be truncated
at any point, to get a polynomial Ek (ζ ) of finite degree k+1.

There is a curiosity in this figure worth discussing. The locations of the roots
appear to follow continuous trajectories, as k → ∞. Now, formally, this is “incorrect”,
in that each root is discrete, and each k is an integer. Yet, it would appear that it should
somehow be possible to interpolate to fractional k. How would this work? It seems
that we fall off the map of conventional mathematics by asking this question.

Another notable aspect to this figure is that the traceries of the roots forma a weav-
ing pattern, resembling ripples in lakeshore sand. Such rippling is not uncommon in
analytic functions derived from arithmetic series commonly studied in number theory.
A similar rippling can be seen in the polylogarithm. Where do the ripples come from?

Oh, there is a simple answer for the rippling. To first order, the location of the
zeros are given by Jentzsch’s theorem, which are roots of unity, in this case: 1−ζ k = 0
because bk = 1. They are perturbed by bk−1 but if this is zero, nothing happens. Next
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Figure 16: Complex Roots of Ek (ζ ) for β = 1.6
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Roots of Ek(zeta) at beta=1.6

This figure shows the location of all roots to the polynomial Ek (ζ ) for 3 ≤ k ≤ 100.
The roots are plotted in the form reiφ with the phase φ running from −π to +π on the
horizontal axis. The vertical axis shows r+ k, so that for each degree k the roots are
vertically offset. Each root is marked with a cross; horizontal line segments connect
successive roots coming from the same polynomial. The roots accumulate to fixed
locations as Ek → E, with the limit E (β ;z) shown in figure 15.

is bk−2 and so on. The first one that is not vanishing bumps, and creates that ripple.
This seems plausible, except that the ripples do not quite align.

Lets pursue the wild idea above, as far as we can. It would seem that there is some
function of two variables, F (η ,ζ ) such that for for integer η = n, it interpolates the
polynomials En (ζ ), so that F (n,ζ ) = En (ζ ). We want this interpolation to be smooth
in some way, so that, for a given root ζα of En (ζα) = 0 it is possible to track the
location of ζα as a smooth function of η . That is, ζα (η) should be smooth, or as close
to being smooth as we can make it.

Should ζα (η) be real-analytic in η? What about F (η ,ζ )? One conjecture would
be to write

F (η ,ζ ) =
∞

∑
j=0

b j (η)ζ
j

with b j (η) being functions of η , having all the correct limits for η = n. But this seems
strange, because for η = n the function F (η ,ζ ) is a polynomial, having n+1 complex
roots ζα , while, for η ̸= n, it is holomorphic in ζ and thus has a countably infinite
number of roots in ζ . So these come and go.

For η = n, the b j (η) are of course integers, and not just integers, but bits, zero or
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Figure 17: Complex Roots of Ek (ζ ) for k ≥ 120
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Roots of Ek(zeta) zeros at beta=1.6

This figure shows the location of all roots to the polynomial Ek (ζ ) for k = 120+ 5 j
and 0 ≤ j ≤ 7. The roots are plotted in the form reiφ with the phase φ running from −π

to +π on the horizontal axis and the modulus r on the vertical axis. Line segments are
used to join each successive root, for fixed k. Thus, each root lies at the tip of a sharp
spike. There is a suggestive accumulation, but it remains difficult to describe it. This is
a large-k version of figure 16, with the offset removed.
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one. Is it necessary to assume that b j (η) are smooth functions of η? Or can they be
discontinuous, yet resulting in F (η ,ζ ) that is smooth in η?

Is it reasonable to assume that b j (η) are real-analytic? I guess they would have to
be, if we want b j (η) to depend smoothly on η . Thus

b j (η) =
∞

∑
i=0

b jiη
i

Of couse, the b j are also functions of β .
Consider ζα (η). Since ζα (η) → const in the limit of η → ∞ it seems that the

correct expansion is either that

ζα (η) = const+
a
η
+

b
η2 + · · ·

or that
ζα (η) = const+ e−aη2 (

b+ cη +dη
2 + · · ·

)
Are either of these reasonable? The second form is particularly beguiling, as it is
reminiscent of the simple harmonic oscillator.

But how would this even work? For η = n, we have that

En (ζ ) = A
n

∏
α=0

(ζ −ζα)

and the constant A = 1 since bn = 1. For η ̸= n, this has to be of the form

Eη (ζ ) = Aη (ζ )
⌊η⌋

∏
α=0

(ζ −ζα)

such that
An (ζ ) = 1

while Aη (ζ )→ (ζ −ζn) as η → n from below. So, for n−1 ≤ η < n there is a linear
interpolation

Aη (ζ ) = (1+η −n)(ζ −ζn)+n−η

or perhaps a (smooth) interpolating function f (x) with f (0) = 0 and f (1) = 1 and

Aη (ζ ) = f (1+η −n)(ζ −ζn)+ f (n−η)

So we have that Aη is this sawtooth, as a function of η and it is constantly sprouting
new monomials, and each sprouted monomial... well, its a blue-sky catastrophe; first
there is not any root ζn and then all of sudden, there is. So we want some Morse-
theory-like thing to make these roots appear out of thin air. How? Is there any existing
theoretical framework for this?
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3.14 Convolutions
Given any polynomial p(x) = ∑

N
i=0 akxi with roots p(x) = 0, the result of inserting

a root into the series E (ζ ) = −1+∑
∞
n=0 bnζ n+1 can be understood as a convolution,

in that xN = 1
aN

∑
N−1
i−0 aixi can be plugged in, replacing any given power ζ N+k with a

sequence of lower powers. This can also be done for any xi for 1 ≤ i ≤ N. Write E ∗i p
for the result of this substitution, performed once, one every ζ i. That is, substitute
ζ i+k 7→ a−1

i ζ k
∑ j ̸=i a jζ

j. This results in a formal series E ∗i p with the property that
[E ∗i p] (x) = E (x) whenever x satisfies p(x) = 0. As this can be done repeatedly and
recursively, one obtains a large equivalence class of formal series having this property.
This can be thought of as a series resummation technique, but one that is valid only
when p(x) = 0.

The question is then: are any of these rewritten series absolutely convergent (hold-
ing p(x) fixed)? Naively, one might guess this is the empty set, but this is not obvious.
Alternately, are there any p(x) for which one the rewritten series becomes absolutely
convergent?

3.14.1 Fourier series

To make the above more concrete, define as above

Ek (ζ ) =−1+ζ

k

∑
n=0

b̌nζ
n

Just as before, the above is defined with b̌ is used instead of b, because b̌ is appropriate
for the convergent. Note that b̌n = bn for n < k while b̌k = 1 so that the series is
correctly terminated to get a proper, valid polynomial.

Consider the sequence Ek (1) as well as Ek (exp i2π/m) or perhaps just generally
Ek (exp i2πx).

3.15 Function field arithmetic
In algebraic number theory, one studies function fields over fields of characteristic p for
p a prime number. Multiplication of a field element by an integer n can be taken as the
beta transform, with β = n integer, acting on the field. Here of course we are working
with a field of characteristic zero (the reals), or more properly, the sigma algebra of the
Cantor set. None-the-less, what sort of inspiration can be taken?

This is spurred by the observation that the mapping LT : F → F given by LT f =
f ◦T−1 is richer than just just a linear operator. That is, not only does one have the
obvious identity LT (a f +bg) = aLT f + bLT g for functions f ,g and constants a,b,
but one also has LT ( f g) = LT f ·LT g and LT ( f/g) = LT f /LT g so that if F is a
function field, then LT preserves that structure.

Additional algebraic identities follow from the sigma algebra of the product topol-
ogy. The product topology implies that one can work with function spaces, e.g. mea-
sures, for which set intersection and set union behave in a field-like way.

If e belongs to the discrete or continuous spectrum of LT , in the sense that LT e =
λe, then it also belongs to the spectrum of any iterate of LT , in the sense that L n

T e =

92



λ ne, and so the L n
T form a basis for a vector space. By linearity, one can arrange for

operators of arbitrary spectrum, in that one has (at least formally) that(
∞

∑
n=0

anL
n

T

)
e =

∞

∑
n=0

anλ
ne

for some arbitrary series of numbers an (presumably convergent, in order to get rea-
sonable results).

3.16 Iterated transfer operator
To understand the nature of the steady-state solution (the Frobenius-Perron eigenstate),
its is worth iterating on the recurrence relation for it, by hand, the first few times. To
do this, it is convenient to write it in the form[

Lβ f
]
(y) =

Θ(y)
β

[ f (α (y))+ f (ω (y))]

where Θ(y) = 1 if y ≤ β/2 else zero; this is a step function to denote the vanishing for
the operator for 2y > β . (This differs from the use of Θ as the Heaviside step function
in earlier sections; the intent is the same, but the goal is to have a briefer notation
here. Which is which should be clear from context.) The functions α (y) = y/β and
ω (y) = 1

2 +α (y) are convenient shorthands for symbolic iteration.
Iterating once gives[

L 2 f
]
(y) = Θ(y)

β 2

[
Θ(α (y))

[
f
(
α

2 (y)
)
+ f ((ω ◦α)(y))

]
+

Θ(ω (y))
[

f ((α ◦ω)(y))+ f
(
ω

2 (y)
)]]

Using a simplified notation g(y) = f (α (y))+ f (ω (y)) allows this to be iterated a third
time:[

L 3 f
]
(y) = Θ(y)

β 3

[
Θ(α (y))

[
Θ
(
α

2 (y)
)

g
(
α

2 (y)
)
+Θ(ωα (y))g(ωα (y))

]
+

Θ(ω (y))
[
Θ(αω (y))g(αω (y))+Θ

(
ω

2 (y)
)

g
(
ω

2 (y)
)]]

and a fourth time, this time omitting the argument, and the various nesting parenthesis.[
L 4 f

]
(y) = Θ(y)

β 4

[
ΘαΘα

2 [
Θα

3gα
3 +Θωα

2gωα
2]+

ΘαΘωα
[
Θαωαgαωα +Θω

2
αgω

2
α
]

ΘωΘαω
[
Θα

2
ωgα

2
ω +Θωαωgωαω

]
ΘωΘω

2 [
Θαω

2gαω
2 +Θω

3gω
3]]

Notice that the primary structure is given by a product of step functions. This is more
conveniently visualized as a tree:
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For any given iteration, the result is the sum of the vertexes at a given level, while
the product of step functions is the product of the step functions in the tree, following
the path to each node. Because any particular step function might be zero, it effectively
acts to cut off the tree at that location. It is therefore interesting to understand general
products of the α and β functions.

It is convenient to define
γx (y) =

x
2
+

y
β

so that α (y) = γ0 (y) and ω (y) = γ1 (y), so that a general iterated sequence of inter-
mixed α’s and ω’s can be written uniformly in terms of γ . Given a sequence of bits
b0b1b2 · · ·bn with each bk being either zero or one, the iterated sequence of functions
can be written as(

γb0γb1γb2 · · ·γbn

)
(y) =

1
2

[
b0 +

b1

β
+

b2

β 2 + · · ·+ bn

β n

]
+

y
β n+1 (27)

So, for example:
α

n (y) =
y

β n

while

ω
2 (y) =

1
2
+

1
β

(
1
2
+

y
β

)
and, in general, that

ω
n (y) =

1
2

[
1+

1
β
+

1
β 2 + · · · 1

β n−1

]
+

y
β n

Iterated sequences of pairs of functions, of the form γb0γb1γb2 · · ·γbn are reminiscent of
de Rham curves, which generalize Cesaro curves and the Koch snowflake. The proper
definition of a de Rham curve assumes the sequence is of infinite length, and applies a
certain continuity condition, and is generally carried out on the complex plane, so that
a continuous, nowhere-differentiable curve results. Here, the curve is distinctly not
continuous: eqn 27 is a finite-length form of the shift series 6 which can be visualized
as the expander function pdr 13, as shown in figure 9.
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Figure 18: Gamma functions
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Examples of “typical” gamma functions. Both figures show gamma functions for β =
1.6; the one on the left shows them for y = 0, while the one on the right shows them
for y = 0.7. Every gamma function is a sequence of plateaus; the zig-zag line is a
high-order gamma, essentially showing the limiting case. The tree function is unity
whenever all of these curves are below β/2, and is zero when above. So, for example,
for the left figure, the tree function is unity, for all values of x less than about 0.4952;
it drops to zero, then returns to unity above x = 0.5, until about 0.6221, when it briefly
plunges and rises again. Then, another dip, before finally settling to zero near 0.6541.
For the right figure, a high-order zig-zag rises above 0.8 somewhere near 0.4914; then
γx;1 (0.7) rises above 0.8 and stays there, driving the tree function to zero, rendering all
other orders irrelevant.

3.17 The Tree Function
Given a bit sequence (bk) and value for y, define the tree function as

Tβ ((bk) ;y) = Θ(y)
∞

∏
n=0

Θ
(
γb0γb1γb2 · · ·γbn (y)

)
For any given fixed sequence of bits and value of y, this function is either zero or one.
One way to understand this function is to ask how it varies for fixed β and y, but with
the bit sequence coming from the Bernoulli shift of eqn 2, so that bn = bn (x). This
simplifies notation, so that one can write

Tβ (x;y) = Tβ ((bk (x)) ;y) = Θ(y)
∞

∏
n=0

Θ(γx;n (y))

with γx;n (y) = γb0γb1γb2 · · ·γbn (y). Its clear that the tree function has maximum support
when y = 0. Figure 18 shows several gamma functions, and the corresponding tree
function that results. Figure 19 shows the x vs. y behavior of the tree functions. Figure
20 shows the β vs. x behavior of the functions. Figure 21 shows a unified visualization
of the three preceding charts.
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Figure 19: Tree functions

The above illustrate the y vs. x dependence of the tree functions; the left image is for
β = 1.4, the right is for β = 1.6. Green indicates the regions where the tree function is
unity, and black where it is zero. To be clear, this shows Tβ (x;y) with x and y plotted
along the x and y axes. The tree functions shown in figure 18 are just two horizontal
slices taken from the right image: a slice along the bottom, and a slice a bit above the
middle.

3.18 Haar Basis Matrix Elements
The symmetric Haar wavelets are built from the mother wavelet

h(x) =

{
1 for 0 ≤ x < 1/2
−1 for 1/2 ≤ x < 1

and has individual wavelets given by

hn j (x) = 2n/2h(2nx− j) for 0 ≤ j ≤ 2n −1

The matrix elements of the transfer operator are〈
mi
∣∣Lβ

∣∣n j
〉
=
∫ 1

0
hmi (x)

[
Lβ hn j

]
(x)dx

where the operator Lβ is given by eqn 17. Computing these by hand promptly pushes
into a big mess. One can obtain explicit expressions, just that they are tedious to obtain.
Some preliminary observations include that〈

mi
∣∣Lβ

∣∣n j
〉
= 0 if β ≤ i/2m−1

because the transfer operator vanishes above β/2. In the same vein, matrix elements
vanish unless [

i
2m ,

i+1
2m

]
∩
[

β j
2n ,

β ( j+1)
2n

]
̸= /0
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Figure 20: Tree function variations

These figures illustrate the β vs. x dependence of the tree function. The upper left
shows Tβ (x;0), the upper right shows Tβ (x;0.3), the lower left shows Tβ (x;0.5), the
lower right shows Tβ (x;0.7). In each case, x runs from 0 to 1 along the x axis, while
β runs from 1 to 2 along the vertical axis. As before, green indicates where the tree
function is unity, and black where it is zero. The tree functions shown in figure 18
correspond to horizontal slices in the first and last images. Note that many (possibly
all??) of the green spikes in the upper-left image reach all the way down to the bottom,
although they are mostly much thinner than a pixel and thus not rendered. The vague
blue hazing near the spikes is an attempt at anti-aliasing, to highlight the sharpness.
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Figure 21: Tree function Unified Visualization

This figure presents a unified visualization of figures 18, 19 and 20. That is, it depicts
the Tβ (x;y) varying all three parameters. The parameterβ runs from 1 at the bottom,
to 2 at the top. The parameter x runs from 0 to 1, left to right. Because Tβ (x;y)
is either zero or one, the color is used to represent the largest value of y for which
1 = Tβ (x;y). The color coding corresponds to red for y = 1, green for y = 0.5, blue
for y = 0.25 and black for y = 0. Thus, for example, figure 20 can be obtained directly
from this, by setting a given color, “or darker”, to black. The figure 19 represents a
single fixed horizontal slice through this figure, with the height of the rectangles in
figure 19 corresponding to the color in this figure.
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or if [
i

2m ,
i+1
2m

]
∩
[

β

(
j

2n − 1
2

)
,β

(
j+1
2n − 1

2

)]
̸= /0

In all other cases, the Haar wavelets completely fail to overlap, and thus the matrix ele-
ments are zero. In addition, only three pairs of wavelets overlap in a non-zero fashion.
That is, for a fixed m,n and j, there are at most six different values of i for which the
matrix elements are non-vanishing: the first three of these are the values for which

β j
2n ∈

[
i

2m ,
i+1
2m

]
or

β
(

j+ 1
2

)
2n ∈

[
i

2m ,
i+1
2m

]
or

β ( j+1)
2n ∈

[
i

2m ,
i+1
2m

]
and likewise for three more. The observation is that the integral vanishes unless the
first wavelet intersects an edge transition of the second wavelet.

The primary failure of this basis is that there is no obvious way to diagonalize the
transfer operator in this basis. There is no obvious way of solving it, of finding it’s
eigenfunctions and eigenvalues, other than by brute-force numerical attack.

3.19 Julia Set

Consider the two iterators a0 (y) = min
(

β

2 ,βy
)

and a1 (y) = max
(

0,βy− β

2

)
. Indi-

vidually, they are the two arms of the beta shift. Here, they have been separated from
each other, so that the full domain 0 ≤ y ≤ 1 is allowed. Exploring all possible inter-
iterations for these gives the Julia set for the transfer operator: it indicates where a
point “came from”, for the iterated transfer operator. There are several related ways to
visualize this. One way is to fix y and then, given a bit-sequence (bn) to compute

j ((bn)) = abo ◦ab1 ◦ab2 ◦ · · ·(y)

Figure 22 shows a visualization for finite bit-sequences: in essence, the very first few
iterations. Although it is similar to figure 10, it is not the same.

For a related notion, consider the definition of “laps”, from Jeffrey Lagerias etal.[25].
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Figure 22: Julia Set visualization

Consider the binary tree of dyadic fractions: that is, the tree whose rows are 1/2, (1/4
3/4), (1/8 3/8 5/8 7/8), ... Consider a function J on this tree. For the head of the tree, set
J (1/2) = β . For the next row, set J (1/4) = a0 (J (1/2)) and J (3/4) = a1 (J (1/2)). It-
erate in this fashion so that J

(
(2k−1)/2n+1

)
= a0 (J (k/2n)) and J

(
(2k+1)/2n+1

)
=

a1 (J (k/2n)) recursively. This produces a function J taking values on every dyadic
fraction k/2n.

In the above figure, β runs from 1 at the bottom to 2 at the top. A single horizontal
slice through the image shows a color-coded version of J, with red coding values near
1, green coding values near 1/2 and blue, fading to black coding values of 1/4 and less.
Note that there are many faint blue lines that extend quite far down, but not all the way
down: these form a stair-step. The image is 1024 pixels wide: it shows the first ten rows
of the binary tree. Although this image is similar to figure 10, it differs in many details.
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4 Hessenberg basis
There is a set of Haar-like wavelets in which the transfer operator is of the form of a
Hessenberg operator - that is, the operator becomes almost upper-diagonal, with only
one diagonal, just below the main diagonal, that is non-zero. Explicitly, the transfer
operator Lβ has matrix entries

[
Lβ

]
i j such that

[
Lβ

]
i j = 0 whenever i > j + 1. A

matrix having this form is called a Hessenberg matrix; such matrices have various
interesting properties; among others, they generalize the Jacobi matrix. This chapter
explicitly constructs an infinite-dimensional Hessenberg matrix, which may now be
called a Hessenberg operator.

Hessenberg operators occur naturally in spectral measure theory; some of this will
be reviewed in several later chapters. To get a flavor for what is to come: Given
a Hessenberg operator, one may construct a system of orthogonal polynomials that
provide a basis for square-integrable holomorphic functions on some domain of the
complex plane. Such a space is called a Bergman space; in this sense it generalizes
the Jacobi operator for real Borel measures. This basis of polynomials in turn al-
lows the Hessenberg operator to be explicitly seen as a shift operator on that domain,
with [H f ] (z) = z f (z) for H the Hessenberg operator and f (z) a holomorphic function
(specifically a Bergman function) on the Bergman domain. But all of this is for later
chapters; its mentioned here only to whet the appetite.

TODO: More motivation is needed for this line of reasoning. After all, we have an
explicit solution for the eigenfunctions, it is given in expression 21. So, why bother
writing the transfer operator as a Hessenberg operator? What does this teach us?

4.1 Hessenberg wavelet basis
The transfer operator Lβ can be fairly easily brought into Hessenberg matrix form.
A sequence of of orthonormal functions is constructed in this section; when used as a
basis, the transfer operator becomes almost upper-diagonal.

The trick to the construction is to define wavelets such that the transfer operator ap-
plied each wavelet causes the end-points of the wavelet to exactly line up with the end-
or mid-points of previous wavelets, thus avoiding the nasty interval-overlap algebra
required with the Haar basis. This is accomplished by carefully picking the midpoint
of the next wavelet in the sequence to be located exactly at the discontinuity of the
transfer operator applied to the previous wavelet.

The construction proceeds as follows. Let

ψ0 (x) =

{ 1√
β/2

for 0 ≤ x ≤ β/2

0 for β/2 < x ≤ 1

Consider Lβ ψ0. It is the sum of two parts: two step-functions; one which is constant
for x ≤ β/2 and another that is constant for x

β
+ 1

2 ≤ β

2 . Solving explicitly for the
location of the step, it is x = β (β −1)/2. For convenience, define m1 = β (β −1)/2
and m0 = β/2. These will anchor a series of midpoints, beginning with m−1 = 0. Using
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the midpoint m1, construct the wavelet

ψ1 (x) =


1

m1

√
m1(m0−m1)

m0
for 0 ≤ x ≤ m1

−1
m0−m1

√
m1(m0−m1)

m0
for m1 < x ≤ m0

0 for m0 < x ≤ 1

Note that this is normalized to unit length:
∫ 1

0 |ψ1 (x)|2 dx = 1 and that it is explicitly
orthogonal to the first:

∫ 1
0 ψ1 (x)ψ0 (x)dx = 0.

Consider Lβ ψ1. As always, it is the sum of two parts. The midpoint of ψ1 is
at m1 = β (β −1)/2 and this mid-point is mapped to one of two different places. If
m1 < 1/2 then it is mapped to m2 = βm1 else it maps to m2 = β (m1 −1/2). Thus, if
m1 < 1/2, define

ψ2 (x) =



0 for 0 ≤ x ≤ m1

1
(m2−m1)

√
(m2−m1)(m0−m2)

m0−m1
for m1 ≤ x ≤ m2

−1
(m0−m2)

√
(m2−m1)(m0−m2)

m0−m1
for m2 < x ≤ m0

0 for m0 < x ≤ 1

else define

ψ2 (x) =


1

m2

√
m2(m2−m1)

m1
for 0 ≤ x ≤ m2

−1
(m1−m2)

√
m2(m2−m1)

m1
for m2 ≤ x ≤ m1

0 for m1 < x ≤ 1

Because each end of the interval on which ψ2 is non-zero lies entirely within one of
the constant arms of ψ1, one has, by construction, that

∫ 1
0 ψ2 (x)ψ1 (x)dx = 0 (and, of

course,
∫ 1

0 ψ2 (x)ψ0 (x)dx = 0.)
The rest of the basis can be constructed iteratively, based on these examples. The

midpoints are given by iterating 4 on m0 = β/2, so that mp = Tβ (mp−1) = T p
β
(m0) is

the p’th iterate of β/2. Let ml be largest midpoint smaller than mp (and l < p); let mu
be the smallest midpoint larger than mp (and l < p). Let m−1 = 0 initiate the sequence
by providing the smallest-possible “midpoint”; m0 = β/2 already provides the largest
possible.

Then define

ψp (x) =



0 for 0 ≤ x ≤ ml
Cp

(mp−ml)
for ml ≤ x ≤ mp

−Cp

(mu−mp)
for mp < x ≤ mu

0 for mu < x ≤ 1

(28)

By construction, this has the property that
∫ 1

0 ψp+1 (x)ψn (x)dx = 0 for any n < p+1.
The normalization constant is

Cp =

√
(mp −ml)(mu −mp)

mu −ml
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which is determined by requiring that
∫ 1

0

∣∣ψp (x)
∣∣2 dx = 1.

4.2 Matrix Elements
The above-defined basis provides the Hessenberg representation for the transfer opera-
tor. Defining 〈

n
∣∣Lβ

∣∣m〉= ∫ 1

0
ψn (x)

[
Lβ ψm

]
(x)dx (29)

this has the expected Hessenberg form, in that〈
n
∣∣Lβ

∣∣m〉= 0 for n > m+1

This is just one diagonal short of being actually solvable. A visualization of the matrix
elements is shown in figure 23.

4.3 Completeness
The Hessenberg basis construction gives a countable set of ψn that is an orthonormal
basis on the unit interval:

∫ 1
0 ψm (x)ψn (x)dx = δmn. Are they complete? Obviously

the {ψn} cannot be complete on the unit interval, as they all vanish for β/2 < x. Per-
haps they are complete on the interval [0,β/2], where they are already orthonormal:∫ β/2

0 ψm (x)ψn (x)dx = δmn.
A numerical exploration shows that the midpoints mp are dense in the interval

(0,β/2), and so this suggests that the basis should be considered to be “sufficiently
complete” on the interval [0,β/2]. The distribution of the mp follow exactly the dis-
tribution of the invariant measure. Convergence is uniform to the same degree that
the midpoints “eventually” fill in and become dense in some interval. Renyi[2] and
Parry[3] do more: they show that the midpoint process is ergodic (Parry points out
that it’s weakly mixing), and provide a formal proof that the distribution is one and the
same as the invariant measure.

The above has some exceptions: there are some values of β for which the midpoint
m0 iterates x = 1/2, whereupon iteration stops (i.e. iterates to zero), or becomes cyclic
(forming a periodic orbit). Which is which depends on how the point 1/2 is treated by
the map. These values of β are potential “trouble spots”, and are explored in greater
detail in the next chapter. They are dense in the interval 1 < β < 2, but they form a
countable set that can be taken to be of measure zero. Thus, most “most” values of β

are not problematic. Excluding the trouble spots, the Hessenberg basis can be taken to
be complete.

Clearly, the ψn span some subspace; do they span the Hilbert space L2 [0,β/2] of
square-integrable functions on the interval [0,β/2]? To what degree can one legiti-
mately write

δ (y− x) =
∞

∑
n=0

ψn (y)ψn (x)

as a resolution of the identity?
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Figure 23: Hessenberg Operator Matrix Elements

Six illustrations of the absolute value of the matrix elements
〈
n
∣∣Lβ

∣∣m〉 for the transfer
operator Lβ for (left to right, top to bottom) β =1.1, 1.2, 1.3, 1.6, 1.90, 1.998 and
0≤ n,m< 48 in the Hessenberg basis. The red color represents values of 0.66 or larger,
green represents values of 0.33 and blue and darker correspond to 0.16 or less. Almost
all matrix elements are in fact precisely zero; black pixels in these images correspond to
matrix elements that are zero. Note that the almost all of the diagonal matrix elements
are exactly zero: that is

〈
n
∣∣Lβ

∣∣n〉 = 0 for most n. The bright-red pixels are just
below the diagonal: for most n, one has that

〈
n+1

∣∣Lβ

∣∣n〉 ? 0.5 with the occasional
blueish pixel suggesting a smaller value. These two, taken together, suggests that the
eigenvalue spectrum is rapidly decreasing. The first few images suggests a regular
pattern that gets increasingly compressed and chaotic as β increases. More-or-less
the sane structure prevails if one instead zooms out to look at the 600x600 submatrix;
animating with fine-grained steps in β does not result in an interesting animated movie.
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The question of completeness dogs some “obvious” assumptions one wants to
make. For example, if the set of states is complete, and the resolution of the iden-
tity holds, then one expects that the transfer operator resolves to the iterated function:

δ (y− (βx mod 1)) =
∞

∑
n=0

∞

∑
m=0

ψn (y)
〈
n
∣∣Lβ

∣∣m〉ψm (x)

It is fun to verify that the world works as one expects it to work: the above can be
verified to hold numerically, for sums limited to a finite cutoff.

4.4 Numerical Eigenvalues
Given the apparent sparsity visible in figure 23, one might think that the eigenvalue
problem is fairly stable, numerically. It is not all that much. Numerical exploration
suggests that the spectrum is on or near a circle lying in the complex plane2, of radius
|λ |= 1/β (ignoring, that is, the leading eigenvalue of 1, which is easily found).

To be clear, this is a numerical exploration of the N ×N principle submatrix of〈
n
∣∣Lβ

∣∣m〉. The eigenvalue problem being posed is to find a vector v⃗ = (vk)
N
k=0 that

solves
N

∑
m=0

〈
n
∣∣Lβ

∣∣m〉vm = λvn

for some constant λ (with the set of possible λ depending on N, of course).
There are various pitfalls in extrapolating from this to the N → ∞ limit. For the next

few paragraphs, consider only some notion of a “minimal” extension from finite N to
the limit. That is, for each finite N, one has a finite set of eigenvalues and eigenvectors.
In the limit, there may be accumulation points: points where the eigenvalues accumu-
late to a limit point, in a standard topological sense. What should that that topological
space be? For finite N, all eigenvectors are explicitly summable, and thus can be taken
to belong to any Banach space ℓp. One may as well take p = 2 the Hilbert space, and
normalize the eigenvectors v⃗ so that 1 = ∑

N
m=0 v2

m.
For finite N, it appears that “most” eigenvalues λ are “near” the circle |λ | = 1/β ,

and that they seem to be very uniformly distributed around this circle. The numer-
ical results indicate that in the limit N → ∞, that the scare-quotes “most” becomes
“almost all” in the usual sense. Similarly, “near” appears to mean that for any given
λ at finite N, one has that |λ | − 1/β ∼ O (1/N). As to uniformity, it seems that the
spacing between nearest neighbors is also O (1/N), and that there are no “premature”
accumulation points: eigenvalues never get any closer than O (1/N), either.

Thus, the minimal closure, the minimal extrapolation to limit points strongly sug-
gests that the limit points really do lie, uniformly distributed, on the circle |λ | = 1/β .

2This was confirmed with both GSL gsl_eigen_nonsymmv() and Lapack DHSEQR solvers, exploring
the principle submatrix of various sizes, up to about 2000×2000 entries. Both systems agree to at least six
decimal places, if not more. Both show sporadic eigenvalues off the circle, but these are not numerically
stable; ergo, the only valid eigenvalues are those on the circle. The matrix entries were constructed using the
midpoint algorithm, described in the last section. To verify that they are accurate, several techniques were
used: numerical integration to confirm orthogonality, and the use of the GnuMP multi-precision library to
push up accuracy.
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Then, writing a given accumulation point as λ = β−1 exp2πiφ , what the numerics do
not reveal, or, at least, do not easily reveal, is whether the allowed values of φ are
always rational, irrational or might have some other regular structure. The numerical
exploration does suggest that the eigenvalues are dense on the circle. Certainly it is the
case Hessenberg basis is countable, an so one would expect the eigenvalue spectrum
obtained in this way to be at least countable, as well. Whether it is also uncountable
seems unknowable in this naive sense.

This question is interesting because if only rational φ are allowed, then the de-
caying eigenfunctions belong to a cyclic group, and exhibit an exact form of Poincaré
recurrence as they decay. If irrational φ are allowed, then the decaying eigenfunctions
are at least ergodic.

For β = 2, the β -transform is the Bernoulli shift, the transfer operator is solvable,
and the spectrum is exactly known. This has been explored by various authors[31]. I’ve
written extensively about this spectrum and the eigenvalues in other texts[32, 33, 34].
To recap, it takes several forms, depending on the function space that one chooses to
work in. If one restricts oneself to polynomial eigenfunctions, then the spectrum is
real, non-negative (it has an extensive kernel) and has eigenvalues of 2−n for all n. The
eigenfunctions are the Bernoulli polynomials. Restricting to square-integrable eigen-
functions, the spectrum continuous, having eigenvalues on the unit disk in the complex
plane. The continuous-spectrum eigenfunctions (for eigenvalues other than 2−n) can
be understood in several ways: if forced to be differentiable, then they are not bounded
(they diverge) at the endpoints of the interval. If forced to be bounded, then they are
fractal (non-smooth) over the entire interval. The unitary spectrum corresponds to
differentiable-nowhere eigenfunctions (wait, or continuous-nowhere? I forget.)

A pair of plausible, numerically-extracted eigenfunctions are shown in image 24.
Presumably, the spectrum can be related to the lap-counting function, given by

Lagarias[25].

4.5 (Non-)Unitarity
The numerical results suggest a hypothesis that perhaps some fragment of Lβ is uni-
tary, as it is ordinarily the case that when eigenvalues appear on the unit circle, it is
because an operator is unitary. That does not seem to be the case here. Specifically,
define the Frobenius-Perron eigenvector ρ as the one satisfying Lβ ρ = ρ and normal-
izing it to unit length, so that ∥ρ∥ = 1 in the Hilbert (mean-square) norm. Define the
reduced operator Rβ in terms of the matrix elements

1
β

〈
n
∣∣Rβ

∣∣m〉= 〈n ∣∣Lβ

∣∣m〉−⟨ρ|n⟩⟨ρ|m⟩

That is, it is just the beta shift operator, with the Frobenius-Perron eigenvector removed,
so that Rβ ρ = 0 . Its rescaled, so that the remaining eigenvectors of Rβ lie on the unit
circle. Is this operator unitary in any way? That is, might either Rβ R†

β
or R†

β
Rβ be

the identity? Here, the dagger † is just the transpose, as Rβ is purely real. Numerical
exploration clearly shows that Rβ is neither unitary on the left nor on the right. Not a
surprise, but does leave the understanding of Lβ in a curious situation.

106



Figure 24: Decaying Eigenfunction, Period Two
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This shows a numerically-computed decaying eigenfunction of period two, for β = 1.6.
It is period two, in that it corresponds to an eigenvalue of λ = −1/β = −0.625, so
that after one iteration of Lβ , the sign flips. This can be confirmed, numerically: after
one iteration, the sign really does flip, to within numerical errors. This was computed
by numerically diagonalizing the 861× 861 matrix given by the lowest terms of eqn
29, and then graphing the eigenvector closes to λ =−0.625 (The GnuMP library was
used to provide the required level of precision in the calculations.)

Although this figure is drawn with curves labeled “real” and “imaginary”, this is
a bit fantastic, and is a numeric artifact. For any period-two eigenfunction, the real
and imaginary parts would have no coupling, and would be independent of each other;
either one could be set to zero and one would still have a valid eigenfunction. This
differs from the case of period-three and higher, where the real and imaginary parts
are expected to mix. (Nor are the two components orthogonal, as one might expect.)
The eigenfunction is also fantastic in that only slightly different numerics result in a
completely different eigenfunction being computed. Even the functions resulting from
diagonalizing the 863 × 863 matrix differ fair amount from those arising from the
861× 861 matrix; there’s only a general resemblance. This is not entirely surprising:
the magnitude of the basis coefficients decays very slowly; even at 861, that are still
on the order of 10−3, and thus contribute strongly.

Computed eigenfunctions for period-three are not dissimilar, nor are the ones for
other values of β . They do seem to start having the general oscillatory character of
sin(1/x) as β → 1, but its not clear if this is a numeric artifact, or something real. The
wildness of these functions contrast sharply with the seemingly tame λ = 1 eigenfunc-
tions shown in figure 1. Compare to figure 14, which paves the way.
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Perhaps it is not enough to subtract the invariant measure: The zeros of the formula
24 lying inside the disk must be subtracted as well. There seems to be a countable
number of these; the subtraction won’t be straight-forward.

4.6 Invariant Measure
Let vn be the Ruelle-Frobenius-Perron eigenvector in the Hessenberg basis. That is, let
vn be the vector that solves

∞

∑
m=0

〈
n
∣∣Lβ

∣∣m〉vm = vn (30)

This is readily computed numerically, and it is straightforward to verify the numerics
by confirming that

ρ (x) =
∞

∑
m=0

vmψm (x)

is the invariant measure of equations 18,19, with the ψk (x) being the wavelets of eqn
28. This expansion seems to “make sense”, as the discontinuities seen in the graph of
ρ (x) in figure 1 occur at exactly the midpoints mp and the size of each discontinuity
appears to get smaller as p gets larger. Given that the wavelet ψp (x) has its central
discontinuity at mp and is bounded on left and right by midpoints of lower order, this
expansion seems to be very natural. This is supported by the diagram 25, which depicts
the values of vn as a function of n for selected values of β . These values of vn are real,
positive, and quickly get small; there are no difficulties or issues of convergence.

Is there some simple expression for the values of vn as a function of β? If so, it
must be formed using some sort of fractal shift. Figure 26 illustrates v1 through v5.

The orbit of the midpoint is correlated with value of the coefficients, illustrated in
figure 27. The midpoint polynomial for mp = T p

β
(β/2), given in eqn 40, is compared

to vmβ m. It can be seen to “line up”. The two are somehow related; its not clear just
how.

4.7 Generating Function
The truncated ordinary generating function associated with the eigenvector of eqn 30
is

GN (z) =
N

∑
m=0

vmzm

with the ordinary generating function being the limit N → ∞. A numerical study of this
function indicates that most of the N zeros of GN are arranged approximately on a circle
of radius β . The arrangement appear to be quite uniform, with more-or-less equidistant
spacing of the zeros. As N increases, it seems that more of the zeros get closer to the
circle, although the numerical instabilities associated with double-precision math make
this difficult to control; an arbitrary-precision eigenvalue solver would be needed to
confirm this behavior.
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Figure 25: Frobenius-Perron Eigenvector Coefficients
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The coefficients vn solving eqn 30 as a function of n, for various values of β . Note
that the coefficients are all real and positive. These can be obtained in two different
ways: either by numerically diagonalizing the matrix equation of 30 or by numerically
integrating

∫ 1
0 ρ (x)ψn (x)dx. Either method gives the same results; diagonalization is

far, far quicker. The slope appears to go as approximately vm ∼ Cβ−m with C = 0.02
roughly.
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Figure 26: Perron-Frobenius Eigenvector Coefficients
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This figure shows v1 through v5 as β is varied. The most prominent spike is located at
β = ϕ = 1.618 · · · the Golden Ratio. All spikes correspond to orbits that terminate in a
fixed point after a finite number of iterations. The root cause and location of the spikes
is shown in figure 28.
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Figure 27: Orbits and Coefficients
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This figure compares the midpoint orbit to the coefficients, providing evidence for the
hypothesis stated in the text. The midpoint orbit is just mp = T p

β
(β/2). Because

β = 1.1 in this figure, the discontinuities are infrequent and appear to be quasi-regular
(they are ultimately fully chaotic), as the midpoint mostly just walks up to where it is
knocked down again. The “coefficient” curve is a graph of 10vpβ p for p running along
the horizontal axis. This is the same vp as discussed in the text, and previously shown
in figure 25. Here, its rescaled by its asymptotic behavior, and a constant of 10 to place
it on the same vertical scale. The discontinuities clearly line up. The relationship is
clearly non-trivial.
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If this behavior persists, and it seems that it will, then the limit N → ∞ cannot be
taken, and the ordinary generating function, as an analytic function, can’t exist, per se,
as it would be uniformly zero inside the disk. Thus, the zeros already found by means
of eqn 24 seem to come to the rescue: these are located inside the disk; perhaps these
are masquerading as “numerical instabilities”, and should be taken as actually existing,
and not spurious.

In the next chapter, it will be seen that circles of zeros in the complex plane is a
recurring theme. This suggests a hypothesis that somehow it might hold that

N

∑
m

vm (β z)m ∼ zN+1 −∑
k

bkzk

as both sides have zeros arranged in circles of unit radius. The right hand side is defined
and explored in detail in the next chapter. Superficially, this hypothesis is clearly false:
coefficients on the left are all real and positive; coefficients on the right - the bk, are
bits, either zero or one. Yet both exhibit a circle of zeros.

XXX This section is awkward. Revise it or cut it.

4.8 Givens rotations
An open question: A Hessenberg matrix can be brought to solvable form by applying
a sequence of Givens rotations. Is the sequence of angles that appear in these rotations
meaningful in any way, or are they just some form of uninteresting junk?
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5 Finite Orbits
The iteration of the midpoint m0 = β/2, that is, the iterated series mn = T n

β
(β/2) is

ergodic in the unit interval, for almost all values of β . However, for certain values
of β , the midpoint iterates will hit the point x = 1/2 where the β -shift map has a
discontinuity. Here, iteration stops: at the next step, this point is defined to iterate to
zero, in eqn 4. Zero is a fixed point, and so there is nowhere further to go. This section
explores these special values of β .

Aside from the definition in eqn 4, one can consider the modified map, where the
less-than sign has been altered to a less-than-or-equals:

T≤
β
(x) =

{
βx for 0 ≤ x ≤ 1

2
β
(
x− 1

2

)
for 1

2 < x ≤ 1

In this map, the point x = 1/2 iterates to β/2, which is just the initial midpoint itself.
In this case, the halted orbits become periodic orbits. There is a third possibility, to
simply remove the points 0, 1 and 1/2 from the domain:

T<
β
(x) =

{
βx for 0 < x < 1

2
β
(
x− 1

2

)
for 1

2 < x < 1

In this case, if the midpoint iterates to 1/2, it can be taken to simply have wandered
out of the domain of validity. The word “wander” is used here in the technical sense:
The map Tβ (x) is dissipative in two different senses: first, in the obvious sense, the
points β/2< x wander away after exactly one iteration; secondly, the mid-point iterates
wander down to zero, never to return, unless they are made explicitly periodic with
T≤

β
(x).
The β values at which the midpoint has a periodic or terminating orbit will be called

“trouble spots”, for lack of a better term. They can be imagined to be prototypes of a
bifurcation point, “depending delicately on initial conditions”: where two choices are
possible, depending on infinitesimally small perturbations of m0, or, alternately, of β .

All three variants can be considered together, so that the “true” beta shift is taken
as the quotient space or identification space[35] of the three variants, in the strict topo-
logical sense of a quotient space. Thus, interestingly, for the beta shift, the periodic
orbits and the fixed point both belong to the same equivalence class. This has some
interesting implications when one compares the beta shift to other iterated maps, such
as the logistic map, which have nontrivial stable regions. Topologically, it would seem
that one can perform a kind of surgery, attaching stable regions exactly into those spots
where, in the beta shift, one has an equivalence class. This solves (at least for me) the
longstanding problem of exactly how to properly describe the topological conjugacy
between different kinds of iterated maps.

5.1 The β -generalized Golden Ratio
Trouble spots occur whenever the p’th iterate mp = T p

β
(m0) lands at the discontinuity,

so that one may take either mp = 0 or mp = m0. The iteration immediately before
corresponds to mp−1 = 1/2. The length of the orbit is p.
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The first finite orbit can be found when β = ϕ =
(

1+
√

5
)
/2 the Golden Ratio.

In this situation, one has that m0 = ϕ/2 and m1 = 1/2. The length of the orbit is
ν = 2. For ν = 3, there are two such trouble spots, which occur when either β 3 −
β 2 − 1 = 0 or when β 3 − β 2 − β − 1 = 0. These correspond to the values of β =
1.465571231876768 · · · and β = 1.839286755214161 · · · .

Where else are such spots located? Consider, for example, m4 = T 4
β
(m0), and

consider the movement of m4 as β is swept through the range 1 < β < 2. This is shown
in figure 28. As made clear in the image, three new degenerate points appear. These
are located at β = 1.380327757 · · · and β = 1.754877666 · · · and β = 1.927561975 · · · ,
which are the real roots of β 4 −β 3 − 1 = 0 and β 4 −β 3 −β 2 − 1 = 0 and β 4 −β 3 −
β 2 −β −1 = 0 respectively.

Following a suggestion by Dajani[4], the β numbers corresponding to the trouble
spots may be called “generalized golden means”. Unfortunately, the term “generalized
golden mean” is in common use, and is applied to a variety of different systems. Not
all are relevant to the present situation; one that is, is given by Hare et al.[36] who
provide series expansions for the real roots of β p −∑

n−1
k=0 β k = 0; these are known as

the n-bonacci constants (Fibonacci, tribonacci, tetranacci, etc.). Stakhov[37] considers
β p+1 −β p −1 = 0 in general settings. Some, but not all of these numbers are known
to be Pisot numbers or Salem numbers[14]. In what follows, these will be referred to
as the “beta golden means”, since all of the ones that appear here have explicit origins
with the beta shift.

5.2 Counting Orbits
How many trouble spots are there? The table below shows the count Mν of the number
of “new” trouble spots, as a function of the orbit length ν .

ν 2 3 4 5 6 7 8 9 10 11 12
Mν 1 2 3 6 9 18 30 56 99 186 335

This appears to be Sloane’s OEIS A001037 which has a number of known relation-
ships to roots of unity, Lyndon words, and the number of orbits in the tent map. The
values are given by Moreau’s necklace-counting function. The trouble spots are the
positive real roots of polynomials of the form

p{bk} (β ) = β
ν −β

ν−1 −b1β
ν−2 −b2β

ν−3 −·· ·−1 = 0

with the {bk} being certain binary bit sequences. There is just one such (positive,
real) root for each such polynomial. These polynomials are relatively prime, in the
sense that a bit-sequence bk is disallowed if it has the same root as some lower-order
polynomial. For example, β 4 −β 3 −β −1 is disallowed; it has the same root as β 2 −
β −1. Equivalently, the quadratic is a factor of the quartic; the quartic is not relatively
prime with respect to the quadratic.

The reason for the appearance of the necklace-counting function is straightforward:
it is counting the number of distinct orbits of a given length. An orbit of length ν is,
by definition, a point x such that x = T ν

β
(x). Such an orbit generates a binary string, of
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Figure 28: Location of Midpoints
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This chart illustrates the location of the first five midpoints, m0,m1, · · · ,m4 as a function
of β . When mk = 0.5, further iteration is ambiguous, as this is the location of the dis-
continuity in the shift map, and the next iteration leaves the midpoint bifurcated. These
are the “trouble spots”. The first trouble spot is visible for m1 = 1/2, corresponding to
β = ϕ and a length of ν = 2. The midpoint m2 crosses 1/2 (in the ascending direction)
at β = 1.465 · · · and β = 1.839 · · · , corresponding to orbits of length ν = 3. It also
crosses discontinuously downwards at β = ϕ . This crossing point has already been
assigned to a shorter orbit. The midpoint m3 has three new crossings. It also rises to
touch 1/2 at β = ϕ; but this has already been assigned to shorter orbits. The midpoint
m4 has six new crossings. Crossings will generally fall to the left and right of earlier
crossings, and so are related in a bracketing relationship. The bracketing is not the full
binary tree; it is pruned, as shorter orbit assignments can knock out longer one. For
example, m4 falls back down at the m2 crossing at β = 1.465 · · · , and so, here, m4 never
even gets close to 1/2; it won’t bracket until later. This is a formalized version of figure
3, which shows midpoints of all orders.
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length ν corresponding to whether T j
β
(x)< 1/2 is true or not. A cyclic permutation of

such a string still corresponds to the same orbit; a reversed permutation does not: thus,
it is a necklace without reversal. The necklace-counting function gives the number
of distinct, unique orbits of a given length that cannot be factored into shorter orbits.
The beta transformation has the property that every possible orbit does occur; none are
prohibited.

Yet, the bit-string defining the polynomial is not a necklace; it cannot be rotated.
Each bit-string corresponds to a unique polynomial, having roots that differ from those
of other polynomials. The polynomials also have a canonical order, fixed as the integer
that generates the bit-string; they cannot be reordered. Ideas such as Lyndon words
apply to the orbits, but not to the defining polynomials. The ordering of the polynomials
is not the lexicographic ordering of the Lyndon words, and cannot be brought into this
order.

The values of Mn are given explicitly by Moreau’s necklace-counting function

Mn =
1
n ∑

d|n
2d

µ

(n
d

)
where the sum runs over all integers d that divide n and µ is the Möbius function. The
generating function is

t
1
2 − t

=
∞

∑
n=1

nMn
tn

1− tn

which has a radius of convergence of |t| < 1/2. For large n, the asymptotic behavior
can be trivially deduced from the defining sum:

Mn =
2n

n
−O

(
2n/2

n

)

The above counting function is for necklaces with only two colors. In general,
one can have necklaces with 3 or more colors; can that happen here? Yes, of course:
if one considers the general β -transform for 2 < β , then, in general, it can be taken
as a “kneading transform” with ⌈β⌉ branches or folds in it. The analogous trouble-
spots again appear, and they can appear after an arbitrary finite-length orbit. Insofar
as they correspond to periodic orbits, they are necessarily counted by the necklace-
counting function. That is, one must consider all possible strings of ⌈β⌉ letters, modulo
a cyclic permutation: this is the very definition of a necklace (or “circular word”). The
number of such necklaces is given by the necklace-counting function. Each such orbit
is necessarily represented by a Lyndon word, which is a representative of the conjugacy
class of the orbit.

The isomorphism of different systems described by necklace polynomials is a sub-
ject that gets some fair amount of attention. Golomb gives an isomorphism between
the irreducible polynomials over Fp, for p prime and necklaces built from Lyndon
words.[38, 39] A number of other results exist, including [40, 41]. At any rate, a closer
study of the beta-polynomials seems to be called for.
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5.3 β -Golden Polynomials
The “trouble spots” occur whenever the k’th iterate mk = T k

β
(m0) of the midpoint m0 =

β/2 lands on the starting midpoint mk = m0; alternately, when mk−1 = 1/2. Because
of the piece-wise linear form of Tβ , the k’th iterate will be a piece-wise collection of
polynomials, each of order k, each of the form p{bk} (β ). These must be arranged such
that p{bk} (β ) = 0 at each discontinuity, as illustrated in figure 28. This constrains the
polynomials that can appear; it constrains the possible coefficients {bk}; not all bit-
sequences appear. The sequences that do appear encode the orbit of the mid-point; see
below.

The table below explicitly shows the polynomials for the first few orders. A poly-
nomial is included in the table if it is an iterate of a previous polynomial, and if it’s
real root is bracketed by the roots of the earlier iterates. Adopting ordinal numbering,
pn (β ) must have the form

pn (β ) =

{
β
(

pn/2 (β )+1
)
−1 for n even

β p(n−1)/2 (β )−1 for n odd
(31)

This recursion terminates at p0 (β ) = β −1.
The positive real root rn satisfying pn (rn) = 0 is unique; the other n− 1 roots are

complex; they are arranged in a roughly evenly-spaced ring on the complex plane, not
far from the unit circle, reminiscent of roots of unity. There is always a positive real
root, which satisfies 1 ≤ rn < 2; the real roots and the polynomials are in one-to-one
correspondence. The roots must be bracketed (to the left and right) by the roots of
polynomials occurring earlier in the sequence; if the root is not bracketed, then the
corresponding polynomial does not appear in the list.

The bracketing constraint can be represented by a recursive function θn (ρ) return-
ing a boolean true/false value, as to whether a given polynomial is acceptable. It is

θn (ρ) =

{
Θ
(
rn/2 −ρ

)
·θn/2 (ρ) for n even

θ⌊n/2⌋ (ρ) for n odd
(32)

The Heaviside Θ(x) used here is one for strictly positive x > 0, and is zero otherwise.
This is important, as using x ≥ 0 will not work. In numerical work, the test should
be bounded away from zero. The recursion compares the candidate ρ to some root at
each lower order. The recursion terminates at θ0 (ρ) = 1. The index n corresponds to
a valid polynomial, and thus a valid root, if and only if θn (rn) = 1. Effectively, this
states that roots of higher-order polynomials must be less than a certain sequence of
lower-order roots. This is visible in the location of the discontinuities in figure 28: new
discontinuities at higher orders must occur to the left of earlier ones.

For example, the polynomial β 3 −β − 1 is excluded from the list simply because
it is not an iterate of an earlier polynomial, even though it has the interesting real root
1.324717957244746 · · · , the “silver constant”. The numbering scheme does not even
have a way of numbering this particular polynomial. Despite this, the silver constant
does appear, but a bit later, as the root of p8 = β 5 − β 4 − 1, which is an allowed
polynomial.
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The polynomial p5 = β 4 −β 3 −β −1 is excluded because it has ϕ = 1.618 · · · as
a root, which was previously observed by p1. The polynomial p9 = β 5 −β 4 −β −1 is
excluded because it’s root, r9 = 1.497094048762796 · · · is greater than its predecessor
r2; the recursive algorithm does not compare it to r4. Note that p9 is relatively prime to
the earlier polynomials, so irreducibility is not a sufficient criterion; the root must also
be less.

The indexing has the property that, whenever θn (rn) = 1, the integer 2n+ 1, ex-
pressed as a binary bitstring, encodes both the coefficients of the polynomial, and also
the orbit of the midpoint. This can be taken as an alternate, non-recursive definition of
θn: it is one if and only if the orbit of rn encodes the bitsequence of 2n+1.

The degree ν of the polynomial is identical to the length ν of the orbit; it is ν =
⌈log2 (2n+1)⌉. The bits bi of the bitstring 2n+ 1 = b0b1b2 · · ·bν correspond to the
orbit as

bi = Θ

(
T i

β

(
β

2

)
− 1

2

)
= di

(
1
2

)
= ki

(
β

2

)
where the di are as given before, in eqn 23, and the ki as in eqn 5. Note that b0 = 1
always corresponds to 1/2 < β/2, always. By convention, the last digit is always 1,
also.

order ν pn (β ) n binary root rn
0 1

1 β 0 0
β −1 0 1 1

2 β 2 −β −1 1 11 ϕ = 1+
√

5
2 = 1.618 · · ·

3 β 3 −β 2 −1 2 101 1.465571231876768 · · ·
β 3 −β 2 −β −1 3 111 1.839286755214161 · · ·

4
β 4 −β 3 −1 4 1001 1.380277569097613 · · ·

β 4 −β 3 −β 2 −1 6 1101 1.754877666246692 · · ·
β 4 −β 3 −β 2 −β −1 7 1111 1.927561975482925 · · ·

5

β 5 −β 4 −1 8 10001 1.324717957244746 · · ·
β 5 −β 4 −β 2 −1 10 10101 1.570147312196054 · · ·
β 5 −β 4 −β 3 −1 12 11001 1.704902776041646 · · ·

β 5 −β 4 −β 3 −β −1 13 11011 1.812403619268042 · · ·
β 5 −β 4 −β 3 −β 2 −1 14 11101 1.888518845484414 · · ·

β 5 −β 4 −β 3 −β 2 −β −1 15 11111 1.965948236645485 · · ·

The next table lists the acceptable polynomial indexes for order 5, 6 and 7. Again,
the coefficients appearing in the polynomial are encoded by the binary value of 2n+1
in the sequence. This sequence has recently been published as OEIS A368747.

order ν valid indexes
5 8,10,12,13,14,15
6 16,20,24,25,26,28,29,30,31
7 32,36,40,42,48,49,50,52,53,54,56,57,58,59,60,61,62,63

The properties of this sequence are briefly reviewed in the next section.
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5.4 Properties of the theta sequence
Define the “validity set” of valid or acceptable indexes as

Ψ = {n ∈ N : θn (rn) = 1, pn (rn) = 0} (33)

This is just the list of indexes from the previous two tables; it is Ψ={0,1, 2,3, 4,6,7,
8,10,12,13,14,15, 16,20,24,25,26,28,29,30,31, ...}. The θn is the acceptance function
from eqn 32. By abuse of notation, write θn = 1Ψ (n) = θ (n) for the membership
indicator function for this set. This function is visualized in figure 29.

The elements of the validity set Ψ are ordered; this is the validity sequence ψm =
ψ (m). It is convenient to start the sequence at ψ0 = 0. This corresponds to β = 2 at
the right; while, at the far left, for β = 1, write ψ−1 = ∞. The function ψm encodes the
locations of one-bits in the bitmask θ , and so θ (ψm) = 1.

The summatory function of the indicator is S (k) = ∑
k
n=1 θn. It counts the total

number of one-bits below the location k. The validity sequence is the pullback of the
summatory function. Each ψm is the smallest integer k for which m = S (k) holds true,
and so one has m = S (ψm). The pullback can be expressed as ψ (m) = ψ (S (ψ (m))).

A few additional properties may be noted:

• For all m, θ (2m) = θ (2m −1) = 1.

• If θ (m) = 1 then θ (2m) = 1. By recursion, θ (2nm) = 1 for all n.

• If m is odd, and if θ (m) = 1, then θ ((m−1)/2) = 1. This is reminiscent of the
Collatz conjecture.

• If θ (m) = 0 then θ (2n (2m+1)) = 0 for all n.

Each of these properties is visible in figure 29. The second bullet accounts for the
stability of the comb-teeth, once they appear, while the last bullet accounts for the
large spaces that open up, and stay open, never filling in.

It is convenient to partition Ψ into ranks ν that correspond to the length of the orbits,
or equivalently, the order of the defining polynomial. Examining the earlier tables,
the rank of n is ν (n) = ⌊log2 n⌋+ 2. The partition is then Ψ =

⋃
∞
ν=1 Ψν with Ψν =

{n ∈ Ψ : ν (n) = ν}. As before, it is convenient to extend the partition so that it can
deal with the endpoints β = 1 and β = 2; this is a kind of (two-point) compactification
of these and other various sequences and sets. The compactification here is to write
ν (0) = 1 and ν (−1) = ∞, which allows components Ψ1 = {0} and Ψ∞ = {−1}. The
size of each component is |Ψν | = Mν given by Moreau’s necklace counting function
Mν .

The representation of θ as a real number is θ =∑
∞
n=1 θn2−n = 0.93258880035365 · · · .

At this time, this does not appear in OEIS.

5.4.1 Leaders

An important subsequence consists of the leaders of the doubling sequences. These can
be defined in several equivalent ways. One property of the bitmask is that if θ (m) = 1,
then θ (2nm) = 1 for all n. A leader λ is the smallest such m at the front of such a
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Figure 29: Indicator function θ
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This figure shows the indicator function θn, as defined in eqn 33, over the range of
26 ≤ n ≤ 219. The function is approximately periodic as a function of the order ν =
⌊log2 n⌋+ 2 of the corresponding polynomial; the order is just the length of a finite
orbit. This figure just stacks seven such ranges, for orders ν=6,7,8,9,10,14,18. One
can view each row as a comb. The teeth of the comb are the members of Ψν . The
number of teeth at each rank is given by Moreau’s necklace-counting function Mν .
The width of the teeth go as 2−ν , but the number of teeth goes as Mν ∼ 2ν/ν . In the
limit ν → ∞, the teeth converge onto a set of measure zero. This can be understood
as a representation of the set Ψ, taken with a real-valued index, rather than an integer
index.
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doubling sequence: it is either an odd number λ = (2k+1) satisfying θ (λ ) = 1 or
it is an even number of the form λ = 2h (2k+1) ,h > 0 such that θ

(
2h (2k+1)

)
= 1

but θ
(
2h−1 (2k+1)

)
= 0. The minimal power h defining the leader will be called the

“height of the leader”.
Equivalently, the leaders can be defined as a subsequence of ψm. By definition, one

has that θ (ψm) = 1. Thus, if ψm is odd, then ψm is a leader. If ψm is even, then it is a
leader if and only if θ (ψm/2) = 0.

Given a valid index ψm, it is useful to define a function Λ that provides the map

Λ(ψm) = 2h (2ψm +1) (34)

This map is not monotonic: Λ(1) = 3 and Λ(2) = 10 but Λ(3) = 7. It is, however,
one-to-one, as leaders are always a product of an odd number times some power of
two.

Sorting the leaders into ascending order, the start of the sequence is 1, 3, 7, 10, 13,
15, 25, 29, 31, ... This sequence is not currently known to OEIS. It is handy to count
from one, and to assign λ0 = 0, so that λ1 = 1 and λ2 = 3 and so on.

The number of leaders of non-zero height (h ̸= 0) at each order ν , starting at ν = 2,
is 0, 1, 1, 3, 3, 7, 10, 18, 28, 52, 83, 151, 256, 457, 798, 1439, 2549, 4627, 8328, 15190,
27659, 50800, 93270, 172330, 318717, 591996, ... This sequence is not currently
known to OEIS.

The number of leaders of a given order ν can be defined as the size of the set
Ω(ν) = {λ : ν = ⌊log2 λ⌋ ,λ = Λ(ψm)}. This can be understood as the necklace func-
tion, minus the elements of non-zero height, plus those promoted up from a lower
grade. This grading is 1, 1, 3, 3, 9, 12, 26, 43, 87, 149, 295, 531, 1021, 1898, 3630,
6822, 13062, 24783, 47481, 90699, 174165, 334148, 643306, 1238619, 2390213, ...
This sequence is not currently known to OEIS.

The number of leaders of a given order ν with a non-zero height is the size of the
set {λ : ν = ⌊log2 λ⌋ ,λ = Λ(ψm) ,0 < h}. This sequence is 0, 0, 1, 0, 3, 1, 6, 5, 16,
15, 43, 52, 116, 173, 348, 551, 1079, 1816, 3432, 6031, 11267, 20226, 37706, 68773,
128135, ... This sequence is not currently known to OEIS.

5.5 Location of β -Golden Roots
The location of the roots can be visualized by using the normalization of the Parry–Gelfond
measure. The function in eqn 10 or more generally 21 can be integrated in a straight-
forward manner. One has

I (β ;z) =
∫ 1

0
νβ ;z (x)dx =

∞

∑
n=0

zn

β n

∫ 1

0
dn (x)dx =

∞

∑
n=0

zn

β n T n
(

β

2

)
The result is a sawtooth, shown in figure 30. Each discontinuity corresponds to the real
root of one of the polynomials. The first few are labeled by the integer labels from the
previous table. The doubling sequences and their leaders are easy to identify.
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Figure 30: Normalization Integral

This figure shows the integral I (β ) = ∑
∞
n=0 β−nT n

(
β

2

)
with 1 < β ≤ 2 running along

the horizontal axis. Each discontinuity corresponds to the location of a real root of
one of the β -Golden polynomials. Some of these are manually labeled by integers,
corresponding to the polynomial labels from the previous polynomial table.
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5.5.1 Bracketing intervals

That this figure is a self-similar fractal is presumably self-evident. Thus, for example,
the graph to to right of r1 = ϕ = 1.618... repeats again between r2 and r1 and again
between r4 and r2. Each such bracketed interval contains a unique largest discontinuity;
it can be seen as being at the front of a doubling sequence. Each discontinuity is in
one-to-one correspondence with a bracketing interval; the bracketing intervals are all
self-similar to one-another.

A distinct notation for bracketed intervals is useful. Write ℓ Z⇒ f ⇐ \ ρ for the
discontinuity f bracketed on the left and right by ℓ and ρ . By “left” and “right”, it is
literally meant that the three roots are in order, with rℓ < r f < rρ with the inequalities
being strict. Not all ascending sequences of three roots form a valid bracket; valid
brackets are obtained by recursive subdivision; this is given in the next section. But
first, some examples.

Taking the liberty to write r0 = 2, the interval to the right of r1 is then 1 Z⇒ 3 ⇐ \ 0.
The most prominent self-similar intervals are then 2 Z⇒ 10 ⇐ \ 1 and 4 Z⇒ 36 ⇐\ 2 and
8 Z⇒ 136 ⇐ \ 4. In each of these examples, the front f was also a leader, with leadership
as defined in the previous section. This is not always the case: the brackets 1 Z⇒ 6 ⇐\ 3
and 1 Z⇒ 12 ⇐ \ 6 and 1 Z⇒ 24 ⇐\ 12 are clearly visible; they are a part of an index-
doubling sequence.

The extreme left side can be assigned the index of ∞ so that r∞ = 1. Thus, the entire
interval 1 ≤ β ≤ 2 corresponds to the bracket ∞ Z⇒ 1 ⇐ \ 0.

5.5.2 The bracket tree

The brackets can be arranged into a binary tree, recursively defined. Any valid interval
ℓ Z⇒ f ⇐ \ ρ can be split into two: the left side and the right side. These two pieces
are ℓ Z⇒ 2 f ⇐\ f on the left, and f Z⇒ Λ( f ) ⇐\ ρ on the right, where Λ is the leader
function given by eqn 34 in the previous section. Recursion starts with ∞ Z⇒ 1 ⇐ \ 0. A
bracketing relationship is valid if and only if it appears in this recursive binary tree.

The left and right moves L,R on the binary tree can then be written as

L : (ℓ Z⇒ f ⇐\ ρ) 7→ (ℓ Z⇒ 2 f ⇐ \ f ) (35)
R : (ℓ Z⇒ f ⇐\ ρ) 7→ ( f Z⇒ Λ( f )⇐ \ ρ)

The right-move is denoted with a fraktur R instead of a roman R in order to distinguish
between the action of the leader function, and the conventional dyadic map

L : m 7→ 2m

R : m 7→ 2m+1

The issue is that not all dyadic R moves result in a valid index: having θ (m) = 1 does
not generally imply that θ (2m+1) is one. However, the leader function does provide
a successor that is always valid: θ (Λ(m)) = 1 is guaranteed by construction.

Any sequence of L,R moves is guaranteed to produce a valid interval; every loca-
tion in the binary tree is mapped to a valid index by the bracket recursion moves. A
general location on the bracket tree is
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G = La1Ra2La3 · · ·Rak

and this has the property that if θ (m) = 1 then θ (G(m)) = 1. Equivalently, if m ∈ Ψ

then G(m) ∈ Ψ. This implies that the bracket recursion relations generate all of Ψ.
Starting at m= 1, all left-right moves produce elements of Ψ; conversely, every element
of Ψ can be expressed as some sequence of left-right moves applied to m = 1. It is
convenient to take G as the function that produces only the “good” indexes. Thus

G : La1Ra2La3 · · ·Rak 7→ La1Ra2La3 · · ·Rak

Labeling the nodes of the binary tree with the natural numbers N provides a bijection
G : N→ Ψ.

The bracket recursion relations split the interval rℓ < r f < rρ into left and right
pieces, as well. That is, each node of the binary tree is labeled by some (unique) r f ,
with the root rℓ and rρ appearing as predecessors in the tree. Of course, the binary tree
can also be mapped to the dyadic rationals; thus the bracketing recursion relations give
a bijection between the dyadic rationals and the finite-length orbits of the β -map. The
bracket tree and the dyadic tree are in one-to-one correspondence. The correspondence
is shown in figure 31.

Perhaps the most interesting aspect to the figure is that it appears to be continuous.
That is, the roots rn appear to be dense in the interval 1 ≤ β ≤ 2. Although the mid-
points r f in an interval rℓ < r f < rρ are not evenly spaced, the midpoint always appears
to be sufficiently far away from either endpoint so that the convergents are dense in the
reals, which implies in turn that the map is continuous. It would appear that the map to
infinite-length sequences can be taken, without pathologies.

5.5.3 The finite comb

The figure 29 shows each indicator rank Ψν as a comb. A better understanding is
gained by mapping this to the infinite binary tree. Each rank ν corresponds to a single
horizontal row in the tree. The numbering that has been adopted is that ν = 2 is at the
root of the tree. The dyadic left and right moves on the comb are

L : θm 7→ θ2m

R : θm 7→ θ2m+1

The indicator function marks each node in the tree with a zero or a one.
One property of this marking is that when a node is marked with a zero, all nodes

in the right subtree are marked with a zero, as well: the presence of a zero removes
the entire right-hand branch under that point. This follows from the property noted
earlier, that if θ (m) = 0, then θ (2n (2m+1)) = 0 for all n. Restating in terms of
moves, if θm = 0 then, taking n = 0, one has Rθm = θ2m+1 = 0. Of course it, follows
that RRθm = 0. Taking n = 1, one has that LRθm = 0, and so both left and right sub-
branches are gone.

A converse marking is given by the property that, if θ (m) = 1 then θ (2m) = 1. On
the tree, this means that left-branches of a node marked with a one are never trimmed:
if θm = 1, then Lθm = 1.
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Figure 31: Beta Bracket Map
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This figure shows the mapping from the dyadic rationals, interpreted as strings of left-
right moves, and the corresponding β = r f root for the front (center) of the correspond-
ing bracket. Thus, 1/2 maps to r1 = ϕ = 1.61803... and 1/4 maps to r2 = 1.46557...
while 3/4 maps to r3 = 1.83929... It would appear that the curve is continuous. The
curve does drop to β = 1 at the left, but it does so very slowly. The brackets ℓ Z⇒ f ⇐ \ ρ
remain quite wide, as the limit approaches β = 1. It does get there, though. An explicit
derivation of this limit is given in a later section. The sharp takeoff at the left is reminis-
cent of the Minkowski question-mark mapping. The left generator for the bracket map
is is quite close to left generator x/(1+ x) of the Minkowski fractal. The Minkowski
fractal has 1/(2− x) as the right generator. Replacing this with x+ 1/2 generates a
curve resembling the bracket curve above, having Minkowski-like behavior to the left,
an linear-like behavior to the right. The de Rham curve construction may be used to
generate such curves, given arbitrary L,R maps. The L,R maps for the bracket curve
are both fractal themselves, so finding affine generators would be a surprise.
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Write 2<ω for the collection of all finite strings in the letters L,R and 2ω as the set of
all infinite strings. The indicator function is then a map θ : 2<ω →{0,1} that indicates
when a given finite, unbounded walk down the tree might have more branches, or
definitely does not. This definitely-maybe marking defines a filter, and dually, an ideal.
The filter/ideal can be taken on the integers, or equivalently, on the reals. The second
possibility is what the figure 29 is hinting at.

The filter has the form that if n∈Ψν then 2n∈Ψv+1. The converse is not true: 10∈
Ψ5 but 5 /∈ Ψ4. Written as a filter, this is LΨν ⊂ Ψν+1 and the subset relation is strict.
Written as and ideal, if n /∈ Ψν then (2n+1) /∈ Ψv+1. This is more clearly stated with
set complements at a given rank. Define the unit interval Iν =

{
n : 2ν−2 ≤ n < 2ν−1

}
and the set complement Ψν = Iν\Ψν . The ideal is then RΨν ⊂ Ψν+1 together with(
LRΨν ∪RRΨν

)
⊂ Ψν+2.

5.5.4 The comb bijection

The good-index bijection G : N → Ψ provides a mechanism to map the full binary
tree into the trimmed tree, so that every node in the trimmed tree is in one-to-one
correspondence with the full binary tree.

The leadership function provides the desired mapping. If n ∈ Ψν , then Λ(n) ∈
Ψν+1+h where h was the height of the leader. Any valid index n gets “kicked upstairs”
by the leadership function; one can write ΛΨν ⊂

⋃
∞
h=0 Ψν+1+h. This just corresponds

to the bracket move R : θm → θΛ(m) on the trimmed tree: given any location θ (m) = 1
in the trimmed tree, the bracket right move returns the next valid right branch in the
trimmed tree: R(m) = Λ(m), since, by construction, θ (Λ(m)) = 1 whenever θ (m) =
1.

5.5.5 The infinite comb

The comb is mapped to the reals by defining open subsets bounded by the dyadic
rationals. Let

I (m,ν) =
{

x ∈ R : m < x2ν−2 < (m+1) ;0 ≤ m < 2ν−2} (36)

so that I (0,2) = {x ∈ R : 0 < x < 1}. The left and right moves are the obvious ones:
LI (m,ν) = I (2m,ν +1) and RI (m,ν) = I (2m+1,ν +1). These are interpreted as the
left and right halves of the (fat) Cantor set, on the reals; the fat Cantor set being taken
as the reals with the dyadic rationals removed.

The filters on Ψν become filters on I (m,ν) in the obvious way, by means of a com-
muting diagram. Write I (Ψν) =

⋃
m∈Ψν

I
(
m−2ν−2,ν

)
as the union of intervals that

cover the nonempty runs in the binary tree. This is effectively what is being graphed in
the figure 29. The limit set is then

θ =
∞⋂

ν=2

I (Ψν) (37)

where the notation θ is happily abused to denote the limit of the indicator function θn
as a subset of the reals. This is possible precisely because θn can be mapped to the
binary tree, which can then be partitioned as filters and ideals.
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Since 2ν−2 ∈ Ψν for all ν , i.e. the leftmost branch is never trimmed, one easily
concludes that 0 ∈ θ . Since

(
2ν−1 −1

)
∈ Ψν for all ν , the rightmost branch is never

trimmed, and so one may conclude that 1 ∈ θ .
It should be clear that the set θ is isomorphic to the Cantor set. The comb bijection

shows how to map points in θ back into the untrimmed infinite tree; the full binary tree
is isomorphic to the Cantor set. From this, one concludes that the set θ is uncountable,
and can be placed in bijection with the reals. This is explored in the next section. A
measure can be assigned to θ . This is given in the section after next. A more formal
examination of θ , tightening up some of the loose language above, will be given in a
later section on eventually-periodic orbits.

5.5.6 Self-describing orbits

What is the meaning of the finite and infinite combs? The finite comb is a mapping of
of the valid-index set Ψ to the dyadics. The infinite comb is the closure of the finite
comb in the reals.

A polynomial index n ∈ Ψ if and only if n encodes a self-describing finite orbit.
That is, n ∈ Ψ if and only if the real root rn of pn (rn) = 0 iterates under the β -map
such that the iterate reproduces the bit-sequence of n. That is, n ∈ Ψ if and only if the
bits bi of the bitstring 2n+1 = b0b1b2 · · ·bν are given by the (finite) orbit as

bi = Θ

(
T i

β

( rn

2

)
− 1

2

)
= ki

( rn

2

)
If n does not have this property, then n /∈ Ψ. At each rank ν , the elements of Ψv
correspond to finite orbits of length ν . In the limit of ν → ∞, one gets self-describing
orbits of unbounded (infinite) length.

By construction, if n ∈ Ψν then Ln ∈ Ψν+1 and Λn ∈ Ψν+1+h. That is, if n is a
self-describing orbit, then it appears as the prefix of longer self-describing orbits.

Polynomials of infinite order are holomorphic functions. Given an infinite bitse-
quence {b}= b0b1 · · · , define a holomorphic function

q{b} (ζ ) = 1−
∞

∑
j=0

b jζ
j+1

If the bit-sequence is finite, in that all b j = 0 when j > k, then this is related to the
polynomials as

ζ
k+1 pn

(
1
ζ

)
= 1−b0ζ −b1ζ

2 −·· ·−bkζ
k+1

Given any arbitrary sequence {b}, the holomorphic function q{b} (ζ ) will have a single,
unique real, positive root. To make contact with the polynomials, write this as the
reciprocal, so that the root r satisfies q{b} (1/r) = 0. This root will have some orbit,
given by

ai = Θ

(
T i

β

( r
2

)
− 1

2

)
= ki

( r
2

)
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Such an orbit is self-describing if and only if {a}= {b}.
The claim being pursued here is that the infinite comb contains all self-describing

sequences, and conversely, every element of the comb corresponds to a self-describing
bit-sequence. That is, if

x =
∞

∑
j=0

b j

2 j ∈ θ

then

x = 2
(

1−q{b}
(

1
2

))
Every real number x ∈ θ in the comb corresponds to such a self-describing orbit. A
proof of these claims will be given in a later section, after the development of some
formal definitions.

In the meanwhile, it can be noted that every rational number corresponds to a bitse-
quence that is ultimately periodic. After an initial unstable finite sequence, the bitstring
settles down to a cyclic orbit. One task ahead is to examine the set Q∩θ : this is the
set of self-describing eventually-periodic infinite-length orbits. It turns out these can
be readily described as root of a finite polynomial. The holomorphic function q{b} (ζ )
to be factored into two finite polynomials, one describing the initial aperiodic segment,
and a second describing the cyclic segment. Such orbits are examined in a later section.

5.6 Formal definitions
A sufficient number of distinct concepts have been introduced, that some basic house-
keeping is in order. The definitions that follow are straight-forward and conventional.
The goal is to provide a workable vocabulary for further discussion.

Let B denote the finite but unbounded binary tree, and B it’s closure as the infinite
tree. The infinite tree is, of course, isomorphic to the Cantor space 2ω ; but this mech-
anism is not currently needed. A more careful definition of the finite tree is needed.
Thus, let B the the graph of vertices and connecting edges B=

{
vi,ei j : i ∈ N, j ∈ {2i,2i+1}

}
.

Let η : N→ B denote the canonical labeling of the binary tree by the positive integers,
so that the root of the tree is given the label 1, the first row is 2,3 and the next row
is 4,5,6,7. This is a bijection: every finite walk down the tree can be labeled with a
positive integer. The walks are left and right moves, in the canonical sense: L : N→ N
with L : m 7→ 2m and likewise R : N→N with R : m 7→ 2m+1. The pushforward of L,R
provide the canonical walks on the tree, as a commuting diagram, so that L◦η = η ◦L
and likewise R ◦η = η ◦R. It is useful to adjoin the pre-root elements {0,∞} so that
R : 0 → 1 and L : ∞ → 1.

Let D be the dyadic rationals, with the canonical bijection to the natural numbers
δ : D → N given by δ : (2n+1)/2m 7→ 2m−1 + n. This labels the root of the tree
with 1/2, and the first row under it as 1/4 and 3/4. The left and right moves are L :
(2n+1)/2m 7→ (4n+1)/2m+1 and R : (2n+1)/2m 7→ (4n+3)/2m+1. This was set
up so that L ◦ δ = δ ◦L and likewise R ◦ δ = δ ◦R. The map δ−1 : N→ D is equally
familiar: it is n = b0b1 · · ·bk 7→ ∑

k
n=0 bn2−n−1 that interprets n ∈ N as a sequence of

L,R moves in the binary tree, returning the fraction found at that location.
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This allows the bracket tree and the good-index bijection to be specified more pre-
cisely. The validity set Ψ ⊂ N is defined in eqn 33 as the collection of natural num-
ber indexes corresponding to polynomials with self-describing roots. This set came
with two functions L,R : Ψ → Ψ given by index-doubling L : m 7→ 2m and leadership
(eqn34) R : m 7→ Λ(m). The good-index bijection G : N → Ψ is then defined as the
pullback L◦G = G◦L and R◦G = G◦R.

The trimmed tree B⊂ B is the image of Ψ under the mapping η , so that B= ηΨ.
This consists of those nodes and edges in the finite binary tree that are labeled by
integers from the validity set Ψ. The good-index function G places the trimmed tree
and the finite tree in a bijection, so that B= ηGη−1B.

The root map r : Ψ → [1,2] takes valid integer indexes, and maps them to the roots
of the corresponding (finite-orbit) polynomials, so that pn (rn) = 0. The bracket map,
depicted in figure 31, can now be written more precisely as the function ρ = r◦G◦δ−1 :
D→ [1,2]. It maps the dyadics to the β values that have finite orbits.

The notation for the finite comb θ is abused in several ways. In eqn 32 it is used to
indicate whether a given polynomial root has a self-describing orbit. It is then defined
as the indicator function for set membership θ = 1Ψ : Ψ → {T,F} and finally as the
finite comb θ ⊂ D. Formally, the finite comb can now be written as θ = δ−1Ψ.

The good-index bijection G : N → Ψ can be commuted with the dyadic bijection
to obtain the “good dyadic map” G= δ ◦G◦δ−1 : D→ θ . Given any dyadic fraction,
this map returns another dyadic that lies within the finite comb. As all the other maps
discussed so far, it is a bijection. It is depicted in figure 32.

The infinite comb θ was the closure of the finite comb, so that θ ⊂ θ . The closure,
defined in eqn 37, is constructed as the infinite intersection of open sets. Corresponding
to this is the closure B ⊂ B of infinitely long paths in the trimmed tree. It is taken as
the limit of the finite but unbounded-length paths in B. The dyadics can be closed
in several ways; one way is to the rationals Q, and then further to the reals R. In
the present case, we restrict attention to the unit interval I = [0,1] ⊂ R and to QI =
Q∩ [0,1]. Proper diligence requires distinguishing BQ from BR and also θQ from θR.

The rationals correspond to infinite length orbits that are ultimately periodic; these
will be examined in a later section. A closure to the root map to the rationals appears
naturally; it can be written as r : θ → [1,2]. Combined with the closure G : QI → θ this
gives a closure of the bracket map ρ = r ◦G : QI → [1,2]. Closing to the reals gives
G : [0,1]→ θ and ρ = r◦G : [0,1]→ [1,2]. This is the primary achievement of this sec-
tion: the definition of the bracket map as a continuous monotonic ascending bijection
between the reals in the unit interval, and β values understood as self-describing orbits.
Proving continuity will require some theoretical machinery and lemmas; these will be
developed in a later section. However, the net result can already be seen in figure 31.

5.7 The Good Map and Measures
The formal definitions allow the description of the bracket map to be completed. This
is a matter of reviewing the remaining congruences. The fundamental one, moving
forward, is the “good map” G : D → θ that is a correspondence between the dyadic
rationals to the comb. The comb, in turn, can be understood as inducing a measure.
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Figure 32: The Good Map
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A graph of the “good map” G : D→ θ . It is defined as the commutator G= δ ◦G◦δ−1

of the valid-index map G : N→ Ψ by the canonical mapping δ : N→ D between the
natural numbers and the dyadic rationals. The finite comb is just a mapping of the good
indexes Ψ to the dyadics: θ = δ−1Ψ.

The measure, combined with the good map, induces the “beta measure”, which is just
the bracket map. This closes the circle of commuting diagrams.

5.7.1 The good map

The validity map G : N→ Ψ can be commuted with the canonical mapping δ : N→ D
between the natural numbers and the dyadic rationals. This defines a map G= δ ◦G◦
δ−1 that is a bijection between the dyadic rationals and the finite comb: G : D→ θ . It
is shown in figure 32.

5.7.2 The comb measure

The infinite comb was constructed as a closure or limit of the finite comb. An interest-
ing trick is to interpret it as a measure, and so to integrate over it. This can be obtained
as a limit over sums of ranks in the finite comb. The measure is depicted in figure 33.

The sum over the indicator function S (k) = ∑
k
n=1 θn shows power-of-two periodic-

ity, same as each rank in the finite comb. Each rank ν can be separated out as
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Figure 33: Limit of Indicator Sum
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This figure shows the limit of the indicator sum A(x) = limν→∞ Aν (x) of eqn 38. More
precisely, it shows Aν (x) for ν = 20. By this point, convergence is sufficient that any
differences from the limit are not visible to the naked eye.
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Sν (k) = S (k)−S
(
2ν−2 −1

)
The intent is to isolate the range 2ν−2 ≤ k < 2ν−1, and to split the sum S (k) into a
collection of ranks Sν .

At the end of the range, the sum Sν achieves Moreau’s necklace-counting function:
Sν

(
2ν−1 −1

)
= Mν . Dividing by Mν gives each rank the same vertical scale: zero to

one. It is also useful to rescale the horizontal range, to run zero-to-one as well. This
gives a normalized version

Fν (x) =
Sν

(⌊
2ν−2 (1+ x)

⌋)
Mν

that runs from zero to one as x runs from zero to one. This function does not have an
interesting limit as ν → ∞, as it slowly drops to zero over the entire unit interval. How-
ever, it does so at a fixed rate, and can be held constant with a radical. The sequence of
functions

Aν (x) = exp
(
Mν 2−ν logFν (x)

)
(38)

converge rapidly and more-or-less uniformly to a limit A(x) = limν→∞ Aν (x). It ap-
pears to be well-defined on the unit real interval 0 ≤ x ≤ 1. This is the limit shown in
figure 33. It is perhaps useful to keep in mind the asymptotic limit of Moreau’s func-
tion, Mν = 2ν/ν−O

(
2ν/2/ν

)
and so the radical scales as Mν 2−ν = 1/ν−O

(
2−ν/2/ν

)
.

The convergence to the limit appears to be uniform and rapid, except at x = 0,
which proceeds slowly. This is easily demonstrated. The x = 0 limit is

A(0) = lim
ν→∞

(Fν (0))
Mν 2−ν

= lim
ν→∞

(
1

Mν

)Mν 2−ν

= lim
ν→∞

(
ν

2ν

)1/ν

=
1
2

lim
ν→∞

ν
1/ν =

1
2

The slow convergence is entirely due to the last limit, above.
The offsets to the sums and limit above were defined above, so as to avoid having

to debate the meaning of limν→∞
ν
√

0. Yet clearly, the intent is that A(x) should provide
a measure for the infinite comb. Should the infinite comb be thought of as having a
large point-weight at x = 0? Perhaps not; thus, perhaps a more suitable measure is
µθ (x) = 2A(x)−1, which runs from zero to one over the unit interval.

To summarize: The function µθ (x) provides a measure for the infinite comb given
in eqn 37. The non-flat sections are where the infinite-length self-describing sequences
are accumulating.

5.7.3 The Beta measure

The significance of the comb measure is revealed by superimposing it’s graph 33 on the
bracket map 31, so that both appear side by side. This is shown in 34. The stair-treads
line up with the blancmange dips in the bracket map. The good map can be used to
eliminate the stair treads. The identity is

2A◦G= ρ = r ◦G◦δ
−1 = r ◦δ

−1 ◦G
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Figure 34: The Beta Measure
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This figure superimposes the two figures 31 and 33 into one. The indicator measure
has been rescaled, so that the y-axis aligns with the interval 1 ≤ β ≤ 2, as that is the
nominal topic of discussion. The comb is also a map through β values, but taken
sideways, as it were. This figure indicates visually what that correspondence is. When
the stair-treads are removed with the “good map”, the two curves are identical. This
is surprising, as they have entirely different origins: the indicator measure is counting
periodic orbits, while the bracket map is providing the locations.

Since G= δ ◦G◦δ−1 is a bijection, it can be peeled off, to give

2A = r ◦δ
−1

This is surprising. The map r is purely local: it takes integers n to the enumerated
roots pn (rn) = 0. It is just specifying locations of roots. The map A is global: it is
counting how many roots there are. It is the limit of a sum, a kind of peculiar integral,
that captures information about all other β values, and how they behaved.

An alternative interpretation is that this provides a way of estimating the number
of orbits of length ν , satisfying β < α for some fixed 1 ≤ α ≤ 2. The total number of
orbits of length ν is given by Moreau’s Mν . The counting function Sν (k) returns the
total number of orbits of length ν that occurred at some β with β ≤ rk. The normalized
version provides this same number slightly more elegantly: the total number of orbits
of length ν with β < ρ (x) is given by Mν Fν (x). The indirection with ρ is annoying;
define fν (α) = Fν

(
ρ−1 (α)

)
, so that fν (α) counts the fraction of all orbits of length
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ν occuring at some (any) β ≤ α . This fraction is approximated as fν (α) ≈ (α/2)ν ,
which holds exactly in the limit ν → ∞.

This last again illustrates the local-global tie between these two: fν (α) is a count-
ing function, an integral of sorts, while α is just a number. It’s quite rare to find such
specific analytic results in this project. Very rare: this is the first.

5.7.4 The front sequence

The validity map or “good index” map G : N → Ψ provides a one-to-one correspon-
dence between the natural numbers and the valid indexes. This can be interpreted as a
one-to-one correspondence between nodes in the binary tree, and the center points or
“fronts” f of brackets ℓ Z⇒ f ⇐ \ ρ . The bracket recursion relations in eqn 35 can be
restated as a commuting diagram

L : fn 7→ f2n = 2 fn

R : fn 7→ f2n+1 =R( fn) = Λ( fn)

The sequence begins at f1 = 1. This sequence contains the same integers as the validity
sequence ψm, and so, for all n, θ ( fn) = 1. Unlike ψm, it is not in sorted order. The start
of the sequence is (1), (2), (3,4), (10,6,7,8), (36,20,42,12,13,14,15,16), (136,...,32), ...
where the parenthesis is used to improve readability, by grouping a run of length 2n.

Note that f5 = 10; this is an expression of the idea that 5 /∈ Ψ. Thus, it is bumped
by the leadership function to the next index that is in Ψ. That is, R f2 = f5 = Λ( f2) =
10. Likewise, f9 = 36; the height of the leadership function was four at this location.
f10 = 20 because ten was “already taken”; but this is just a different way of thinking
about L f5 = f10 = 2 f5 = 20.

As always, the series is quasi-self-similar across rank sets of Iν =
{

n : 2ν−2 ≤ n < 2ν−1
}

.
This is visualized in figure 35.

At each rank ν , one has a corresponding set of β values for that rank. Denote
these sets as βν = {r ( fn) : n ∈ Iν} where r (m) = rm is the positive real root of the
polynomial pm, as always: pm (rm) = 0. In the limit ν → ∞, these sets converge rapidly
to the bracket map of figure 31. Not a surprise: this is, more or less, how that figure is
generated.

The convergence appears to be uniform! Uniform, in that a uniform bound is
enough to give a worst-case bound. Convergence is slowest, just above a dyadic ra-
tional, and fastest, just below it, varying by huge orders of magnitude. By “conver-
gence”, it is meant how rapidly the brackets ℓn Z⇒ fn ⇐ \ ρn shrink. For n ∈ Iν , the
two endpoints belong to Iν−1. The corresponding roots are r (ℓn)< r ( fn)< r (ρn) and
so one is looking to see how the difference |r (ρn)− r (ℓn)| decreases as ν → ∞. The
limit to convergence is at β = 1, where n = 2ν−2. Although fn → 1 as ν → ∞, it does
so very slowly. At ν = 30, one finds r ( fn) ≈ 1.08 while at ν = 60 one still has that
r ( fn) ≈ 1.05. This slowness is directly visible on the left side of figure 31, which
visually has converged only to r ( fn)≈ 1.2 at ν = 10. A bound can be obtained numer-
ically; it is r ( fn)< 1+0.5/ logν , which holds at this worst-case location. This bound
is pessimistic; its clear that better bounds exist.
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Figure 35: Front Sequence
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Front sequence

This figure shows the front sequence fn over three rank ranges ν = 8,10,12, for
which I8 = {64 ≤ n < 128} and I10 = {256 ≤ n < 512} and I12 = {1024 ≤ n < 2048}.
The three ranges are rescaled, to run from left to right. Note the labels on the y-
axis: the maximum value of fn in a given range increases super-exponentially; super-
factorially, even. For these three ranges, the maximum values occur at f71 = 34952,
f271 = 17318416 and f1055 = 34905131040. Super-exponential means that for rank ν ,
the max observed at that rank is approximately exp

(
ν1.525

)
, which holds up to about

ν = 16, beyond which 64-bit numerics overflows. The rate of increase seem to be faster
than factorial.
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Figure 36: Distribution of Golden Means
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The bin-counted distribution of roots of pn (β ) for three different cutoffs, and the cor-
responding eyeballed fit. Bin-counting proceeds by dividing the range 1 < β < 2 into
1303 equal–width bins. Proceeding methodically to find roots for all n < 2k for fixed
k, each root is assigned to a bin. At the end of the counting process, the bin-counts are
normalized by the width of the bin, and the total number of roots observed (i.e. by the
Moreau counting function). For fixed k, the distribution appears to be approximately
exponential (but not quite - there is a deviation from linearity in the graph above, just
barely discernible by naked eye). Three different k’s are shown, and three eyeballed
fits. The general trend appears to be that, for fixed k, the distribution is approximately
β α with α ≃ k+3− log2 k ≃ log2 Mk+3. Clearly, the k → ∞ limit accumulates all the
measure at β = 2.

5.8 Distribution of β -Golden indices
It seems natural to ask how the indices n are distributed with respect to the real roots rn
of pn. It appears that there is no such distribution, or rather, that it accumulates entirely
at β = 2. Figure 36 shows the numerically computed (bin-counted) distribution of the
zeros of pn (β ) for n < 2k for three different values of k. This suggests that, in the limit
of k → ∞, almost all pn (β ) have roots rn that approach 2.

This is a relative statement, as it is comparing an implicit measure on the integers
to the distribution of the roots. Thus, there are several (ambiguous) ways to phrase the
result. One is to say that small integers (those n < 2k for any k) describe roots that
accumulate at β = 2. The converse description is to say that for any fixed β < 2, the
values of the indices n needed to label the roots rn become unboundedly large.

The local distribution of roots can be sensed from the figure 37, which visualizes
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Figure 37: Distance Between Means
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This figure visualizes the inverse distance between golden means. A total of 1375 =

∑
12
k=1 Mk roots were obtained, and then sorted into ascending order. Letting rn represent

the n’th root in this sequence, this shows the reciprocal distance 1/1375(rn+1 − rn). In-
creasing the number of roots essentially just rescales this graph, making it progressively
more vertical. In essence, almost all of the roots accumulate near β = 2; roots become
increasingly rare the smaller the β . In the limit, one might say that essentially all roots
are at β = 2: although the roots are dense in the interval 1 < β < 2, the counting
measure indicates that they are accumulating at β = 2 only.

the distance between neighboring roots.

5.9 Complex Roots
What are the complex roots? Numerical work clearly indicates that they seem to be
approximately cyclotomic in some sense or another. They seem to be more-or-less
uniformly distributed in an approximate circle, always. The modulus of most of the
complex roots appear to be less than one. This is violated for the complex roots of
p2k (β ) = β k+2 −β k+1 −1, where some of the roots in the right-hand quadrant have a
modulus larger than one. By contrast, the complex roots of p2k−1 (β ) = β k+1−∑

k
j=0 β j

seem to always have a modulus less than one. These two seem to be the extreme cases:
in general, the polynomials appear to be “approximately cyclotomic”. Its not clear how
to make this statement more precise.

These numerical results can be argued heuristically: just divide the polynomial by
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it’s leading order. That is, a general polynomial of this form is

pn (z) = zk+1 −
k

∑
j=0

b jzk− j

with the convention that b0 = bk = 1, and the bit-sequence 2n+1 = b0b1b2 · · ·bp cor-
responding to a terminating orbit. Dividing by zk+1gives a series

1− 1
z
− b1

z2 − b2

z3 −·· ·

Clearly, this can have a zero only when |z|< 2 as otherwise, the terms get too small too
quickly.

5.10 β -Golden β -Fibonacci Sequences
It is well known that the golden ratio occurs as limit of the ratio of adjacent Fibonacci
numbers:

ϕ = lim
m→∞

Fm

Fm−1

where Fm = Fm−1 +Fm−2. There is a generalization of this, which also has received
attention: the tribonacci, quadronacci, etc. sequences, whose limits are

αn = lim
m→∞

F(n)
m

F(n)
m−1

where F(n)
m = F(n)

m−1 +F(n)
m−2 + · · ·+F(n)

m−n.
Is it possible that the real roots of the polynomials pn(β ) are also the roots of

such sequences? But of course they are! Given a finite string of binary digits {b} =
b0,b1, · · · ,bk, write the beta-Fibonacci sequence as

F{b}
m = b0F{b}

m−1 +b1F{b}
m−2 + · · ·bkF{b}

m−k

The name “beta-Fibonacci” is needed because the term “generalized Fibonacci se-
quence” is already in wide circulation for the special case of all bits being one. The
ratio of successive terms is

α
{b} = lim

m→∞

F{b}
m

F{b}
m−1

and is given as the (positive) real root of the polynomial

pn (β ) = β
k+1 −b0β

k −b1β
k−1 −·· ·−bk = 0

These polynomials and their roots were already enumerated and tabulated in the previ-
ous section.
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The beta-Fibonacci sequences do not appear by accident: these sequences have an
ordinary generating function (OGF) given by the polynomial! That is,

∞

∑
m=0

zmF{b}
m =

zk

1−b0z−b1z2 −·· ·−bkzk+1 =
1

zpn
( 1

z

)
The factor of zk in the numerator serves only to initiate the sequence so that F{b}

0 =

· · ·= F{b}
k−1 = 0 and F{b}

k = 1.
These sequences are generic: they indicate how many different ways one can par-

tition the integer m into elements of the set {b0,2b1,3b2, · · · ,(k+1)bk}. So, for ex-
ample, the entry for n = 12 in the table below corresponds to OEIS A079971, which
describes the number of ways an integer m can be partitioned into 1, 2 and 5 (or that
5m can be partitioned into nickels, dimes and quarters). This corresponds to the bit se-
quence {b}= 11001; that is, {b0,2b1,3b2, · · · ,(k+1)bk}= {1 ·1,2 ·1,3 ·0,4 ·0,5 ·1}=
{1,2,5}. From such partitions, it appears that one can build partitions of the positive
integers that are disjoint, and whose union is the positive integers. This suggests a
question: can these partitions be expressed as Beatty sequences?

The previous table is partly repeated below, this time annotated with the OEIS
sequence references.

n binary root root identity sequence
0 1 1
1 11 ϕ = 1+

√
5

2 = 1.618 · · · golden ratio Fibonacci A000045
2 101 1.465571231876768 · · · OEIS A092526 Narayana A000930
3 111 1.839286755214161 · · · tribonacci A058265 tribonacci A000073
4 1001 1.380277569097613 · · · 2nd Pisot A086106 A003269, A017898
6 1101 1.754877666246692 · · · A109134 A060945
7 1111 1.927561975482925 · · · tetranacci A086088 tetranacci A000078
8 10001 1.324717957244746 · · · silver A060006 A003520, A017899

10 10101 1.570147312196054 · · · Pisot A293506 A060961
12 11001 1.704902776041646 · · · A079971
13 11011 1.812403619268042 · · · A079976
14 11101 1.888518845484414 · · · A079975
15 11111 1.965948236645485 · · · pentanacci A103814 A001591
16 100001 1.28519903324535 · · · A005708, A017900

All of these integer sequences and roots participate in a number of curious rela-
tions having a regular form; this is, of course, the whole point of listing them in the
OEIS. This suggests a question: do the known relationships generalize to the beta-shift
setting?

For example, the polynomials of the form

β
k+1 −β −1 = 0
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are the Lamé polynomials, they arise as solutions to Lamé’s equation, a kind of el-
lipsoidal harmonic differential equation. In the present notation, these correspond to
polynomials pn (β ) = 0 for n = 2k.

Another example is the Fibonacci-tribonacci-tetranacci sequence of “generalized
golden means”. These are the roots of the series for which all bk = 1, that is, the roots
of

β
k+1 −β

k −β
k−1 −·· ·−1 = 0

In the present notation, these would be the polynomials pn (β ) = 0 for n = 2k−1. Such
roots can be rapidly computed by a series provided by Hare, Prodinger and Shallit[36]:

1
αk

=
1
2
+

1
2

∞

∑
j=1

1
j

(
j (k+1)

j−1

)
1

2 j(k+1)

This series is obtained by making good use of the Lagrange inversion formula. Here,
αk is the k’th generalized golden mean, i.e. the solution p2k−1 (αk) = 0. Can the Hare
series be extended to provide the roots rn of pn (rn) = 0 for general n?

Another set of observations seem to invoke the theory of complex multiplication
on elliptic curves, and pose additional questions. So:

The tribonacci root r3 is given by

r3 =
1
3

(
1+

3
√

19+3
√

33+
3
√

19−3
√

33
)
≃ 1.839 · · ·

The silver number (plastic number) r8 is given by

r8 =
1
6

(
3
√

108+12
√

69+
3
√

108−12
√

69
)
≃ 1.324 · · ·

The Narayana’s cows number (supergolden ratio) r2 is given by

r2 =
1
6

3
√

116+12
√

93+
2

3 3
√

116+12
√

93
+

1
3
≃ 1.465 · · ·

The root r6 is related to the silver number r8 as r8 = r6 (r6 −1) and is given by

r6 =
1
6

3
√

108+12
√

69+
2(

3
√

108+12
√

69
)2 ≃ 1.754 · · ·

Do the other roots have comparable expressions? To obtain them, is it sufficient to
articulate the theory of “complex multiplication” on elliptic curves? Are these just dis-
guised solutions to Lamé’s ellipsoidal harmonic differential equation? The appearance
of only the cube and square roots is certainly suggestive of an underlying process of
points on elliptic curves.

Other factoids:

r2 =
1
3
+

2
3

cos
(

1
3

arccos
(

29
2

))
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5.11 β -Fibonacci sequences as shifts
The nature of the β -Fibonacci sequences as shift sequences can be emphasized by
noting that they arise from the iteration of the companion matrix for the polynomial
pn (x). This is a (k+1)× (k+1) matrix in lower-Hessenberg form:

B =



b0 1 0 0 · · · 0
b1 0 1 0 · · · 0
b2 0 0 1 · · · 0
...

...
...

. . .
...

bk−1 0 0 0 · · · 1
bk 0 0 0 · · · 0


(39)

Iteration produces a linear recursive sequence this is the β -Fibonacci sequence. The
m’th element of the sequence is obtained from the m’th iterate Bm.

Define the exchange matrix as

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

0 1 · · · 0 0
1 0 · · · 0 0


This can be used to write the above in the more conventional companion-matrix form:

C = [JBJ]T =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · 1
bk bk−1 bk−2 bk−3 · · · b0


Some explicit examples are in order. For the golden ratio, one has

B =

[
1 1
1 0

]
and the iterates are

B2 =

[
2 1
1 1

]
, B3 =

[
3 2
2 1

]
, B4 =

[
5 3
3 2

]
, Bn =

[
Fn Fn−1

Fn−1 Fn−2

]
with Fn being the n’th Fibonacci number, as usual. For the general case, after m ≥ k−1
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iterations, one gets the Hankel matrix

Bm =



F{b}
m F{b}

m−1 F{b}
m−2 · · · F{b}

m−k+1 F{b}
m−k

F{b}
m−1 F{b}

m−2 F{b}
m−3 · · · F{b}

m−k F{b}
m−k−1

F{b}
m−2 F{b}

m−3 · · ·
...

...
...

. . .
...

...

F{b}
m−k+1 · · ·
F{b}

m−k · · · F{b}
m−2k


so that the top row consists of the latest sequence values. When multiplied by the bits,
this just generates the next iterate in the sequence. The upper-diagonal 1’s just serve to
shift columns over by one, with each iteration: that is why it’s a shift!

The product BmJ is a Toeplitz matrix.
The characteristic polynomial of this matrix is, of course, the polynomial pn:

det [B− xI] = (−1)k pn (x)

Thus, we can trivially conclude that the eigenvalues of B are given by the roots of
pn (x). This matrix is in lower-Hessenberg form; this makes it obvious that it’s a shift;
a finite shift, in this case.

5.12 Equivalent labels for orbits
There are many equivalent ways of labeling the various expressions and properties
under consideration. These are recapped here.

5.12.1 Orbits

For every given 1 < β < 2 there is a unique orbit of midpoints
{

mp
}

given by mp =
Tβ (mp−1) = T p

β
(m0) and m0 = β/2. The orbits are in one-to-one correspondence with

β . The midpoints are the same as the Renyi–Parry sequence; namely T p
β
(β/2) =

(β/2) t p
β
(1), recalling here the notation of eqn 8 and 10. Some orbits are of finite

length; the rest are either eventually periodic or are ergodic.

5.12.2 Orbit encoding

The midpoint generates a unique sequence of bits {b0,b1,, · · · ,bk, · · ·} given by the
left-right moves of the mid-point, as it is iterated. That is, bk = Θ(mk −1/2) so that
bk is one if the midpoint is greater than half, else bk is zero. Each bit-sequence is in
one-to-one correspondence with β . Finite orbits have finite-length sequences.

5.12.3 Monotonicity

The compressor function w(β ) = ∑k bk2−k is a monotonically increasing function of
β , so that values of w(β ) are in one-to-one correspondence with β .
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5.12.4 Polynomial numbering

If the orbit is finite, then there exists a polynomial pn (z) = zk+1−b0zk −b1zk−1−·· ·−
bk−1z− 1 with k = 1+ ⌊log2 (2n+1)⌋ being the length of the orbit. The positive real
root rn of pn (rn) = 0 is β = rn. That is, the iteration of rn will generate the finite-length
bit-sequence {b} = {b0,b1,, · · · ,bk}. The integer n is in one-to-one correspondence
with the bit sequence, and with the value of β . The integer is explicitly given by
2n+1 = ∑

k
j=0 2 jb j.

If the orbit is not finite, there is a function q{b} (ζ ) = 1−∑
∞
j=0 b jζ

j+1 holomorphic
on the unit disk, having one unique positive real zero q{b} (r{b}

)
= 0 where this r{b} =

1/β is the same β that generated the bit-sequence {b}. Iterating r{b} generates {b}.
If {b} is finite, then q{b} (ζ ) = ζ k+1 pn (1/ζ ), so these functions agree on finite-length
sequences.

5.12.5 Brackets

If the orbit is finite, then there exists a unique bracketing relationship ℓ Z⇒ n ⇐ \ ρ for
which n is the polynomial index. The left and right bounds ℓ,ρ are strictly smaller
indexes: ℓ < n and ρ < n, and even more strongly, 2ℓ ≤ n and 2ρ ≤ n that have the
property of bounding the positive real roots of the corresponding polynomials: rℓ <
rn < rρ , with pℓ (rℓ) = pn (rn) = pρ

(
rρ

)
= 0.

5.12.6 Binary tree

Each bracket is in one-to-one correspondence with a node in the full, unbounded binary
tree. Sub-brackets define left and right sub-intervals that are disjoint, and whose union
makes up the whole interval. Every node in the full binary tree can be labeled with
a unique sequence of left-right moves to get to that node. This places the brackets
(and thus, the polynomials and the roots and the mid-point orbits) in unique, one-to-
one correspondences with finite-length strings of L,R moves. Such strings are, in turn,
in one-to-one correspondence with the dyadic rationals. The L,R strings are in one-to-
one correspondence with the orbits {b} but they are not numerically the same! This are
distinct sequences! In particular, all possible L,R moves are allowed. Only a limited
number of orbits {b} are possible, as limited by necklace-counting considerations.

5.12.7 Baire sequences

If the orbit is finite, then there exists a unique integer sequence [m1,m2, · · · ,mk] such
that the index is given by η [m1,m2, · · · ,mk]. This is a bijection between all valid in-
dexes and all possible finite-length sequences. Due to the bounding property of the
brackets, limits of k → ∞ can be taken, and these limits are unique. Thus, all β val-
ues, including those with non-finite orbits, can be placed in a one-to-one bijection with
infinite-length sequences [m1,m2, · · · ] ∈ Nω .
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5.12.8 Beta-Fibonacci sequences

If the orbit is finite, then there exists a sequence of integers F{b}, the beta-Fibonacci
sequence, that is in one-to-one correspondence with the finite bit sequence {b} =
b0,b1, · · · ,bk, and with the value of β . There are also sequences for each infinite-length
orbit {b}.

5.12.9 Shift matrix

If the orbit is finite, then the finite bit sequence {b} = b0,b1, · · · ,bk defines a lower-
Hessenberg “golden shift” matrix B, as shown in eqn 39. The limit of k → ∞ can be
taken in a relatively straightforward manner, given below.

5.12.10 Summary

To summarize: any one of these: the integer n, the polynomial pn (x), the bracket
location in the binary tree, a dyadic rational, a point in Baire space, the integer sequence
F{b}

m , the orbit of midpoints mp = T p (β/2), the orbit encoding {b}, the shift matrix
B, the value of the compressor function w(β ) and, of course, β itself can each be used
as a stand-in for the others, as they are all in one-to-one correspondence. Specifying
one determines the others; all uniquely map to one-another. The formulas that provide
maps between each of these can all be given in closed form, except for the handful of
recursively-defined formulas. The recursive formulas are all invertable; thus they are
computable (decidable). They are all equivalent labels. Fashionably abusing notation,
n ≡ pn (x)≡ rn ≡ {b} ≡ F{b}

m ≡ mp ≡ w(β )≡ β ≡ B.
An explicit expression relating the orbit encoding and the orbit can be read off

directly from eqn 7. Plugging in,

mp = T p+1
β

(
β

2

)
=

β

2

[
β

p+1 −
p

∑
j=0

b jβ
p− j

]
(40)

for p < k the length of the bit sequence, and mk = T k+1
β

(β/2) = β pn (β )/2 = 0 termi-
nating, since β is the positive root of pn (x).

Four of the correspondences given above ask for finite orbits. Three of these can be
extended to non-finite orbits in an unambiguous and uncontroversial way. The exten-
sions are covered in the next two sections. The fourth is the numbering n of the finite
orbits. These are countable; there is no way to extend the counting number n to the
non-finite orbits. Indeed, there are too many: the non-finite orbits are uncountable.

5.13 Infinite-nacci integer sequences
The beta-Fibonacci integer sequence can be extended to arbitrary (viz. infinite) length
bit sequences, as

F{b}
m =

m

∑
j=1

b j−1F{b}
m− j
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starting with F{b}
0 = 1. The sum is always finite, but one cannot perform it without

first knowing at least the first m bits of the (now infinite) bit-sequence {b}. The integer
sequence still has the desirable property it had before:

β = lim
m→∞

F{b}
m

F{b}
m−1

Here, the β value is the one associated to {b}. So, as before, the real number β and the
bit sequence {b} label exactly the same orbit.

Remarkably, one can be sloppy in how one deals with finite orbits with this ex-
tension. One has two choices that are equivalent: One choice is to truncate, so that
the bit-sequence ends with all-zeros, effectively rendering it of finite length. The alter-
native is to allow it to continue periodically, forever. Either form results in the same
β -Fibonacci sequence!

As an example, consider β = 1.6, which is close to the golden ratio, but not quite. It
has an infinite non-periodic (nonrecurring) bit-sequence {b}= 101010010100101000000100 · · · .
The generated integer sequence is F{b}

m = 1,1,1,2,3,5,8,12,20,32,51,82,130,209,335,535, · · ·
which undershoots the Fibonacci sequence (12 appears, where we expected 13, and 20
instead of 21, and so on). The ratio of the last two is 535/335 = 1.597 · · · and the
previous is 335/209 = 1.603 · · · and the ratio of successive elements eventually con-
verges to 1.6. By comparison, the Fibonacci sequence is generated by the bit-string
1010101010... of alternating ones and zeros.

The β -Fibonacci representation of the orbits has the remarkable property that one
does not need some a priori mechanism to know if some orbit is finite or not. This dual
representation of finite orbits is reminiscent of a property commonly seen in Cantor
space 2ω representations of the real number line, where the dyadic rationals (which
are countable, of course) map to two distinct bit-sequences (one ending in all-ones,
the other ending in all-zeros). A more general setting for this is given in symbolic
dynamics, where the totally disconnected Bernoulli scheme Nω can be used to repre-
sent elements of certain countable sets two different ways. For N = 10, one famously
has that 1.000...=0.999... as an example. So likewise here, one can toggle between
finite and infinite-periodic strings. So, given a finite string {b} = b0,b1, · · · ,bk−1,bk
which has, by definition, bk = 1, create a new finite string that is twice as long:
{b′} = b0,b1, · · · ,bk−1,0,b0,b1, · · · ,bk which necessarily has exactly the same beta-
Fiboanacci sequence. That is, F{b′}

m = F{b}
m . Once can repeat this process ad infinitum,

obtaining an infinite periodic string. The difference between these two is simply the
difference between a less-than sign, and a less-than-or-equal sign used in the genera-
tion of the orbit, as noted at the very beginning of this chapter. We have proven: finite
orbits are exactly the same as infinite periodic orbits, at least when represented by real
numbers and by integer sequences. Conversely, the difference between using < and ≤
during iteration is immaterial for describing convergents.

5.14 Infinite β -Polynomials
An infinite polynomial is, of course, an analytic function. The goal here is to extend
the finite framework. The definition of the polynomials above requires a finite bit
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sequence. This can be extended to an asymptotic series, by writing first

pn (z) = zk+1
(

1−b0z−1 −b1z−2 −·· ·−bkz−k−1
)

Set ζ = 1/z to get

ζ
k+1 pn

(
1
ζ

)
= 1−b0ζ −b1ζ

2 −·· ·−bkζ
k+1

which extends to the holomorphic function

q{b} (ζ ) = 1−
∞

∑
j=0

b jζ
j+1

This is manifestly holomorphic on the unit disk, as each coefficient is either zero or
one. It has a positive real zero, of course: q{b} (1/β ) = 0. Comparing to eqn 24, we
see that this is exactly the same function, or rather, it’s negative. Indeed, following the
definition, bn = dn (1/2) and so E (β ;ζ ) =−q{b} (ζ ).

This at last provides a foot in the door for correctly describing the eigenvalues of the
β -transfer operator: they are in one-to-one correspondence with the zeros of q{b} (ζ ).
As before, though, this only exposes a discrete spectrum in the region 1/β < |λ | ≤ 1;
if there is any spectrum outside this region, the methods here cannot access it.

5.15 Tschirnhaus transformation
What happens is the Tschirnhaus transformation is applied to the polynomials? Where
do they go to?

5.16 β -Hessenberg operator
Extending the golden shift matrix B of eqn 39 to an infinite-dimensional operator is a
bit trickier. Of course, one could just declare the matrix elements of the operator to be
this-and-such, but these matrix elements are with respect to what basis? Is the operator
even bounded? The answer to the second question is obviously “no”.

The characteristic equation of B is det(B−λ I) = (−1)k pn (λ ) = 0; the Frobenius-
Perron eigenvalue β > 1 is too large, although the k − 1 = ⌊log2 n⌋ other roots are
conveniently arranged near the unit circle, more-or-less equidistant from one another.
The solution is to rescale B by 1/β . The Frobenius-Perron eigenvalue is now one,
and the remaining eigenvalues distributed near or on a circle of radius 1/β . We may
as well take the transpose as well, so that Hβ = BT/β is in upper-Hessenberg form.
Rescaled in this way, it now seems safe to declare, by fiat, that the operator Hβ is the
correct extension of the matrix B to infinite dimensions. Just to be explicit: given the
bit-sequence {b}, the operatorHβ has the matrix elements〈

0
∣∣Hβ

∣∣ j
〉
=

b j

β〈
j+1

∣∣Hβ

∣∣ j
〉
=

1
β
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with all other entries being zero. This is clearly in upper-Hessenberg form, with the
subdiagonal providing the shift.

Comparing to the upper-Hessenberg form of Lβ of eqn 29, and the numerical re-
sults on it’s eigenvalues, it seems clear that Hβ and Lβ must surely be similar. That
is, there must be an operator S such that

Lβ = S−1Hβ S

The invariant measure Lβ ρ = ρ is mapped to σ = Sρ , where Hβ σ = σ is the FP-
eigenvector. It is easy to write down σ explicitly: σ =

(
1,β−1,β−2, · · ·

)
, that is,

σ j = β− j. This is obviously so: the subdiagonal entries of Bβ act as a shift on σ

and the top row is just

1 =
∞

∑
j=0

〈
0
∣∣Hβ

∣∣ j
〉

σ j =
∞

∑
j=0

b jβ
− j−1 = 1−q{b}

(
1
β

)
= 1

Although Hβ is no more solvable than Lβ in the wavelet basis is, it is certainly
much, much easier to work with. It also reaffirms the Ansatz 22 for eigenfunctions.
To be explicit: if v is a vector satisfying Hβ v = λv, with vector elements v j, then the
function

v(x) =
∞

∑
j=0

d j (x)v j

is an eigenfunction of the transfer operator: that is,
[
Lβ v

]
(x) = λv(x), or, explicitly:

1
β

[
v
(

x
β

)
+ v
(

x
β
+

1
2

)]
Θ

(
β

2
− x
)
= λv(x) (41)

which is just eqn 17. So, for λ = 1, this is just v = σ which is just eqn 22 for z = 1, the
invariant measure, as always. But it also says more: the only solutions to Hβ v= λv are

necessarily of the form v =
(

1,(λβ )−1 ,(λβ )−2 , · · ·
)

, because the subdiagonal forces
this shift. To satisfy the the top row of Hβ , one must have that

λ =
∞

∑
j=0

〈
0
∣∣Hβ

∣∣ j
〉

v j =
1
β

∞

∑
j=0

b j

(λβ ) j = λ

(
1−q{b}

(
1

λβ

))
= λ

and so the eigenvalue λ is exactly the eigenvalue that solves the β -series q{b} (1/λβ ) =
0. This effectively concludes a proof: the solutions to this series are the only eigenval-
ues of the β -transfer operator; there are no others.

To recap: finite orbits have an associated shift matrix B; this extends naturally to a
shift operator Hβ for non-finite orbits. The shift operator has a sufficiently simple form
that it’s eigenvectors can be explicitly written down in closed form; they are necessarily
coherent states3. The top row of the shift operator defines a holomorphic function q{b}

whose zeros correspond to eigenstates of the shift operator. The holomorphic function

3The term “coherent states” comes from quantum optics: a state that can be written as an analytic series
over states/vectors expressed in a different basis.
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is determined by the binary digit sequence {b}. The binary digit sequence is obtained
from the iterated midpoint, as b j = d j (1/2) where d j (x) = 1 if x < T n (β/2). This is
enough to prove eqn 41 holds for the special value x = 0 (for any eigenvalue λ ). It was
previously proven that the vanishing of q{b} is independent of x, i.e. that eqn 41 holds
for any x.

5.17 Hamburger moment problem

Closely related is the Hamburger moment problem. Given the sequence F{b}
m of gen-

eralized Fibonacci numbers, one can write the corresponding Hankel matrix, and then
ask what corresponding measure corresponds to that sequence.

Perhaps the Hausdorff moment problem is more appropriate in this context... it
asks for the measure on the unit interval, instead of the whole real-number line.

5.18 Eigenfunctions from finite orbits
To recap: eigenstates of the transfer operator correspond with the zeros of q{b} (ζ ), or,
more precisely, the zeros for which |ζ | ≤ 1. The reason for this limitation is that the
eigenstates are explicitly given by

v(x) =
∞

∑
m=0

dm (x)ζ
m

for ζ = 1/βλ ; this is absolutely convergent only for |ζ | < 1. One might hope to
analytically continue this to the entire complex plane, but the continuation depends on
the digit sequence dm (x). One might expect that an analytic continuation is impossible,
as the dm (x) are ergodic, and thus throws up some kind of essential singularity at
|ζ |= 1 that cannot be continued past. We are lacking in tools and language to discuss
this situation. Perhaps some insight can be gleaned by examining the periodic orbits...

5.18.1 Case n=1

Consider first β = ϕ = 1.6180 · · · the golden ratio. The corresponding finite beta-
polynomial is q{11} (ζ ) = 1−ζ −ζ 2; the infinite series is

q{1010101···} (ζ ) = 1−ζ −ζ
3 −ζ

5 −·· ·=
(
1−ζ −ζ

2)/(1−ζ
2)

which has a positive real zero at ζ = 1/ϕ and poles at ζ =±1. The zero corresponds
to the FP eigenvalue of one. The invariant measure is

v(x) =
∞

∑
m=0

dm (x)
ϕm =


ϕ for 0 ≤ x < 1

2
1 for 1

2 ≤ x < ϕ

0 for ϕ ≤ x

There is a negative real zero at ζ = −ϕ , but the eigenfunction summation is not con-
vergent here.
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5.18.2 Case n=2

The n = 2 case has the finite bitstring {b} = 101 and the periodic bitstring {b} =
1001001 · · · . The corresponding finite beta-polynomial is q{101} (ζ ) = 1−ζ −ζ 3; the
infinite series is

q{1001···} (ζ ) = 1−ζ −ζ
4 −ζ

7 −·· ·=
(
1−ζ −ζ

3)/(1−ζ
3)

which has a positive real zero at ζ = 1/β = 0.6823 · · · and three poles on the unit
circle. The FP eigenvalue provides β = 1.4655 · · · . The invariant measure is

v(x) =
∞

∑
m=0

dm (x)
β m =



β

β−1 for 0 ≤ x < T
(

β

2

)
1

β−1 for T
(

β

2

)
≤ x < 1

2
1/β

β−1 for 1
2 ≤ x < β

0 for β ≤ x

There are many equivalent ways to write the invariant measure; the above just selected
some representatives from the coset of equivalent expressions. For example, the third
entry could be written as β = 1/β (β −1).

5.18.3 Case n=3

The n = 3 case has the finite bitstring {b} = 111 and the periodic bitstring {b} =
1101101 · · · . The corresponding finite beta-polynomial is q{111} (ζ ) = 1−ζ −ζ 2−ζ 3;
the infinite series is

q{110110···} (ζ ) = 1−ζ −ζ
2 −ζ

4 −·· ·=
(
1−ζ −ζ

2 −ζ
3)/(1−ζ

3)
which has a positive real zero at ζ = 1/β = 0.5436 · · · and three poles on the unit
circle. The FP eigenvalue gives β = 1.8392 · · · . The invariant measure is

v(x) =



β

β−1 for 0 ≤ x < 1
2

β for 1
2 ≤ x < T

(
β

2

)
1

β−1 for T
(

β

2

)
≤ x < β

0 for β ≤ x

5.18.4 Case n=4,6,7

The pattern gets repetitive. There is no case n = 5, as this is not one of the allowed
orbits. The bitstrings are those previously listed in tables; they are {b} = 1001 {b} =
1101 and {b}= 1111. The infinite series is q{b···} (ζ ) = q{b} (ζ )/

(
1−ζ 4

)
. The zeros

are as previously listed. The n = 4 plateaus are at 1
β−1

[
β , 1, 1

β
, 1

β 2

]
. The

n = 6 plateaus are at
[

β

β−1 ,
β 2

(β 2−1)(β−1)
, β , β

(β 2−1)(β−1)

]
. The n = 7 plateaus

are at
[

β

β−1 , β , β+1
β (β−1) ,

1
β−1

]
. Again, the values at the plateaus can be written

in many different ways, given the finite polynomial.
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5.18.5 Case n=16

The n = 16 polynomial is the first one to have complex zeros inside the unit disk. The
finite bitstring is {b}= 100001 and so the polynomial is q{100001} (ζ )= 1−ζ −ζ 6. The
positive real root is ζ = 0.7780895986786 · · · and so β = 1/ζ = 1.28519903324535 · · · .
The complex zeros are located at ζ = 0.965709509 · · ·exp±iπ0.2740452363 · · · which
corresponds to the eigenvalues λ = 0.525107 · · ·±i0.611100 · · ·= 0.805718 · · ·exp±iπ0.274045 · · · .
The corresponding eigenfunction is shown immediately below.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

� = 1.2852 eigenfunction � = 0.5251 ei � 0.2740

re
im

The order of q{b} is six, and this has six almost-plateaus; they are not quite flat,
although they are close to it, presumably because ζ is close to one.

5.18.6 The general case

Generalizing from the above, one finds the following:

• For a period-k orbit, the infinite series is q{b···} (ζ ) = q{b} (ζ )/
(
1−ζ k

)
.

• The first label n for which q{b} (ζ ) has a complex zero within the disk is n = 16.
As a general rule, it seems that complex zeros inside the disk only appear for
β < ϕ (I believe; have not carefully checked. This seems reasonable, as later
chapters show that the region of β < ϕ behaves very differently from larger
values.)

• The invariant measure has k plateaus. The plateau boundaries are given by
T m
( 1

2

)
for m = {0, · · · ,k−1} (so that T 0

( 1
2

)
= 1

2 and T 1
( 1

2

)
= β

2 , and so on).

• The leftmost plateau (of the invariant measure) is at β/(β −1) = ∑
∞
n=0 1/β n.

• The other plateaus appear to be at simple rational functions of β , but a precise
expression is elusive.

To solve the last issue, perhaps one can find tools in Galois theory. Let R [ζ ] be the
ring of polynomials in ζ and consider the quotient ring L = R [ζ ]/q{b} (ζ ). This L is
a field extension of R and so one expects a Galois group Gal(L/R). The plateaus of
the invariant measure are presumably associated with the group elements. This seems
like a promising direction to go in: perhaps this is just enough to explain the length

150



of an orbit, the sequence of points in the orbit, the reason that some polynomials are
forbidden (they don’t generate prime ideals), the appearance of Moreau’s necklace-
counting function, etc. This remains an unfinished exercise.

5.19 Factorization
The polynomials factorize. Let rn denote the real positive root of pn (x) – that is,
pn (rn)= 0. Then one has the factorizations (dropping the subscript on r for readability)

p1 (x) = x2 − x−1 = (x− r)(x+ r−1) = (x− r)(x+ p0 (r))

where p0 (x) = x−1. Likewise, there are two order-3 polynomials. They factor as

p2 (x) = x3 − x−1 = (x− r)
(
x2 + xp0 (r)+ rp0 (r)

)
while

p3 (x) = x3 − x2 − x−1 = (x− r)
(
x2 + xp0 (r)+ p1 (r)

)
Continuing in this way, there are three order-4 polynomials. They factor as

p7 (x) = x4 − x3 − x2 − x−1 = (x− r)
(
x3 + x2 p0 (r)+ xp1 (r)+ p3 (r)

)
and

p6 (x) = x4 − x3 − x2 −1 = (x− r)
(
x3 + x2 p0 (r)+ xp1 (r)+ rp1 (r)

)
and (noting that there is no p5 that occurs in the series)

p4 (x) = x4 − x3 −1 = (x− r)
(
x3 + x2 p0 (r)+ xrp0 (r)+ r2 p0 (r)

)
There’s clearly a progression, but perhaps a bit difficult to grasp. It can be more

clearly seen by writing pn = q2n+1 and then writing out 2n+ 1 in binary. So, once
again, from the top:

p1 (x) = q11 (x) = (x− r)(x+q1)

where q1 = q1 (r) which adopts the shorthand that the q polynomials on the right-hand
side always have r as an argument, which can be dropped for clarity. Note also that
q0 (r) = r was already previously observed, in an earlier section. That is, using the
dropped-r convention, q0 = r. Next

p2 (x) = q101 (x) = (x− r)
(
x2 + xq1 +q01

)
where, by definition, q01 (x)≡ rq1 (x). Next,

p3 (x) = q111 (x) = (x− r)
(
x2 + xq1 +q11

)
is the second factorization of order 3. For order 4, one has

p4 (x) = q1001 (x) = (x− r)
(
x3 + x2q1 + xq01 +q001

)
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where, this time, q001 (x) = xq01 (x) = x2q1 (x). Continuing,

p6 (x) = q1101 (x) = (x− r)
(
x3 + x2q1 + xq11 +q011

)
where, by definition, q011 (x)≡ xq11 (x). Finally,

p7 (x) = q1111 (x) = (x− r)
(
x3 + x2q1 + xq11 +q111

)
It is worth doing one more, just to clinch that the reversal of the bit sequence is indeed
correct. For this purpose, p12 = q11001 should serve well. One has

p12 (x) = q11001 (x) =(x− r)
(
x4 + x3 p0 (r)+ x2 p1 (r)+ xrp1 (r)+ r2 p1 (r)

)
=(x− r)

(
x4 + x3q1 + x2q11 + xq011 +q0011

)
The general pattern should now be clear. Given one of the admissible bit sequences

b0b1b2 · · ·bk−1bk and recalling that bk = 1 always, (and that b0 = 1 always) one has

pn (z) = qb0b1b2···bk−1bk (z) = zk+1 −b0zk −b1zk−1 −·· ·−bk−1z−1

which has the factorization, with bits reversed:

qb0b1b2···bk−1bk (z)= (z− r)
(

zk + zk−1qb0 + zk−2qb1b0 + zk−3qb2b1b0 + · · ·+qbk−1bk−2···b1b0

)
where, as already noted, each q is a polynomial in the root r. Although, notationally,
the root r was taken as the real root, the above factorization works for any root.

The trick can be repeated. Although at first it might seem daunting, the pattern is
uniform: every power of z occurred in the above. Let s ̸= r be some other root. Then

qb0b1b2···bk−1bk (z)= (z− r)(z− s)
(

zk−1 +
(
s+qb0

)
zk−2 +

(
s2 + sqb0 +qbob1

)
zk−3 + · · ·

)
The coefficient of the zk−4 term is s3+ s2qb0 + sqbob1 +qb0b1b2 and so on down the line.
From this point on, this becomes just an ordinary factorization of polynomials... well,
but so was the first step, as well. What made the first step interesting was that, because
the coefficients at that first step were explicitly either zero or one, the corresponding
reversal of the bit sequence became manifest.

One may as well bring this detour to a close. There’s nothing particularly magic in
the above factorization, other than the combinatorial rearrangement of the polynomial
labels. A generic polynomial factorization looks like the below, for comparison. If

p(x) = xn+1 + c0xn + c1xn−1 + · · ·cn

and if r is a root of p(x) viz p(r) = 0 then

p(x) =(x− r)
(
xn +(r+ c0)xn−1 +

(
r2 + c0r+ c1

)
xn−2 + · · ·

)
=(x− r)

(
xn +a0xn−1 +a1xn−2 + · · ·

)
with

ak = rk+1 +
k

∑
j=0

c jrk− j
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So the above works for any polynomial. The present case was special since the c j were
all either zero or minus one. The general form of this factorization is the one associated
with the Vandermonde matrix.

TODO: Perhaps writing down the above as matrix equations will shed some in-
sight? Maybe the matrix form will reveal some structure that is hidden, when working
algebraically?

There are some notable values occurring in the factorization. These are shown in
the table below:

ν n bin root r q polynomial OEIS root of
2 1 11 ϕ = 1.618· q1 = 0.618 · · ·

3
2 101 1.465571· q1 = 0.46557123187676 · · · A088559 q3 +2q2 +q−1

q01 = 0.68232780382801 · · · A263719 q3 +q−1

3 111 1.839286· q1 = 0.83928675521416 · · · q3 −2q2 −2
q11 = 0.54368901269207 · · · A192918 q3 +q2 +q−1

4

4 1001 1.380277·
q1 = r−1

q01 = 0.52488859865640 · · · A072223 q4 −2q2 −q+1
q001 = 0.72449195900051 · · ·

6 1101 1.7548776·
q1 = r−1 A075778 q3 +q2 −1

q11 = 0.32471795724474 · · · silver - 1
q011 = 0.56984029099805 · · ·

7 1111 1.9275619·
q1 = r−1

q11 = 0.78793319384471 · · ·
q111 = 0.51879006367588 · · ·

As may be seen, some of these constants are already notable for various reasons.
Many are also the real roots of yet other polynomials, of a not entirely obvious form.
(Well, the q1 polynomials will always be obvious expansions in binomial coefficients).
The suggestion here is that these are all in turn part of some filigreed partially-ordered
set of intertwining polynomials. Exactly how to express that intertwining in any sort of
elegant or insightful way is not obvious.
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6 Decaying Eigenfuncs
This section examines the general set of solutions to Lβ ψ = λψ for |λ |< 1. Two gen-
eral classes of solutions are presented. One consists of a discrete spectrum of (piece-
wise) polynomial eigenfunctions, occurring at the β values associated with the finite
orbits. The other class consists of (piece-wise) fractal eigenfunctions, which can be
constructed for any complex λ with |λ |< 1. That is, the continuous spectrum.

The discrete spectrum is closely analogous to the discrete spectrum of the poly-
nomial eigenfunctions of the Bernoulli operator. Recall that the Bernoulli operator is
the beta transform, for β = 2. It has a discrete spectrum with λ = 2−n for all non-
negative integers n; the corresponding eigenfunctions are the Bernoulli polynomials.
The Bernoulli polynomials are orthonormal to one-another. In the n → ∞ limit, they
converge to either sin2πx or cos2πx, depending on whether n is even or odd. Both of
these trig functions, and any function odd about 1/2 lie in the kernel of the operator.

The Bernoulli operator also has a continuous spectrum that has a countable number
of distinct eigenfunctions for each λ . [32] As these all share the same eigenvalue,
one is free to choose the basis as desired. There are two generic possibilities. In one
choice, the basis functions are square integrable, but are not differentiable at the dyadic
rationals. These are built up as coherent states of underlying periodic waves. They
resemble the blancmange curve; the periodic spectrum appears here, in the same way
that the blancmange curve becomes a parabola for a specific parameter value.

A different choice of basis provides eigenfunctions that are smooth over the open
interval 0< x < 1 but diverge at x = 0,1 and are thus not square-integrable, due to these
divergent endpoints. Equivalently, they are not smooth at x = 0,1. The discrete spec-
trum emerges as those special values of λ for which the endpoints are finite, thus both
smooth and square-integrable. Explicit constructions of both sets of basis functions,
and the transformation between them, is given in [32].

This section presents explicit analogous solutions for the beta operator, for the β

values corresponding to finite orbits. That is, both kinds of eigenfunctions are pre-
sented: piecewise-polynomial eigenfunctions, and fractal (coherent state) eigenfunc-
tions. The development below is long and verbose, but never rises above the complexity
level of basic algebra. There does not seem to be much need for abstract conceptual-
ization here; it is mostly a matter of turning the crank and verifying identities.

6.0.1 Stability and numerics

On a tangent to the main topic, an interesting behavior was observed in numerical work.
All of the eigenfunctions presented below can be implemented on a discrete lattice, and
verified that they behave as expected. The primary utility of doing this is to double-
check algebra and create the occasional pretty picture. However, such simulations lead
to their own interesting behaviors.

Of primary note is that the eigenfunctions are remarkably unstable. One can set
one down on a lattice, say, of 10K or 100K points, and iterate the transfer operator
on it, point by point, for dozens or hundreds of iterations. Any given eigenfunction
rarely survives a dozen iterations. Of course, finer lattices allow greater stability, but
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that a 20K-point lattice is only good for a mixing time of only 10 or 15 steps indicates
a strong coupling.

This is the usual case. In a few exceptional cases, stability has been observed: poor
solutions converge on a good one, and stay there indefinitely. This suggests the lattice
dynamics of the beta map have a life of their own.

In addition to the rare case of a stable attractor, a number of cases show a form of
Poincare recurrence on extremely short timescales (dozens of iterations). It’s not clear
what the ultimate cause and explanation is, or what analogy to use. The recurrences re-
semble bet frequencies, Moire patterns, aliasing and sampling effects. The presence of
a discrete lattice necessarily infects the system with p-adic and cyclotomic behaviors.
Perhaps there is some resemblance to the Fermi–Pasta–Ulam–Tsingou problem, as the
transfer operator does couple across the lattice, in an ergodic, possibly mixing kind of
way.

6.1 Definitions
The conventions used in this section follow those used elsewhere in this text. Define
m0 = β/2 and m1 = Tβ (m0) = β (β −1)/2. Then the transfer operator can be written
as [

Lβ f
]
(y) =

1
β

[
f
(

y
β

)
Θ(m0 − y)+ f

(
y
β
+

1
2

)
Θ(m1 − y)

]
The task is to exhibit eigenfunctions with λ < 1; that is, to obtain solutions to

λβ f (y) = f
(

y
β

)
Θ(m0 − y)+ f

(
y
β
+

1
2

)
Θ(m1 − y)

The presentation works through a sequence of examples, generalizing at each step.

6.2 Examples
Case by case. This proceeds with the conventional polynomial and orbit numbering, so
that n is a “valid index” number, and ν is the length of the orbit.

6.2.1 Case n=1 (order ν = 2)

Consider, for example, β = ϕ ≈ 1.618034 the golden ratio. Then

ρ (y) =


ϕy− 1

2 for 0 ≤ y < 1
2

y− 1
2 for 1

2 ≤ y < ϕ

2
0 for ϕ

2 ≤ y ≤ 1

satisfies Lϕ ρ = ρ/ϕ and so its a decaying eigenfunction. It has the L1 norm
∫ 1

0 |ρ (y)|dy=
1/4ϕ . Note that B1 (y) = y−1/2 is the first Bernoulli polynomial.
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Orthogonality The question of orthogonality is interesting. Well, interesting only
because it is prone to thought-crime, and so an effort to educate seems needed. Note
that

∫ 1
0 ρ (y)dy = 0; it this were not so, then ρ would not be orthogonal to the invariant

measure µ . Here, the invariant measure is (un-normalized)

µ (y) =


ϕ for 0 ≤ y < 1

2
1 for 1

2 ≤ y < ϕ

2
0 for ϕ

2 ≤ y ≤ 1

Now the subtle point arises. The integral
∫ 1

0 ρ (y)µ (y)dy ̸= 0, but this is not the correct
way to compute orthogonality! The problem is the Jacobian is missing. The correct
integral to determine the inner product ⟨ f ,g⟩ between f and g with respect to the in-
variant measure ν is

⟨ f ,g⟩=
∫ 1

0
f (y)g(y)

∣∣ν ′ (
ν
−1 (y)

)∣∣−1
dy =

∫ 1

0
f (ν (x))g(ν (x))dx

In the present case, ν ′ (x) = µ (x) ... Note the prime. Alas, this is a victim of the usual
convention for naming things. Plugging through the rest of the way with f = ρ and
g= µ has g and the Jacobian cancel, leaving

∫ 1
0 ρ (y)dy= 0 as the correct orthogonality

result. This works for the present, but requires the reinsertion of the Jacobian, if the
product was of some other two functions.

6.2.2 Case n=2 (order ν = 3)

Let r2 be the positive real root of p2 (β ) = β 3 − β 2 − 1. Some useful identities and
factoids

• r2 ≈ 1.465571231876768

• m0 = r2/2 is the midpoint and its in the theta of the first term in the xfer

• r2 (r2 −1)/2 = 1/2r2 = Tr2 (r2/2) = m1 appears in the second theta in the xfer.

• m1 < 1/2.

Then

ρ2 (y) =


β 2y− 1

2 for 0 ≤ y ≤ m1

βy− 1
2 for m1 < y ≤ 1

2
y− 1

2 for 1
2 < y ≤ m0

0 for m0 < y ≤ 1

solves Lβ ρ = ρ/β for β = r2. Here’s a sketchy proof.

• Write four intervals I0 = [m0,1] and I1 =
[ 1

2 ,m0
]

and I2 =
[
m1,

1
2

]
and I3 = [0,m1]

• Assume f1 (y) = y− 1
2 on I1 and some unknown functions f2 (y) on I2 and f3 (y)

on I3.
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• Then L ρ|I1 =
1
β

ρ

(
y
β

)∣∣∣
I1

because the second term is vanishes on the interval

I1. By definition, L ρ = 1
β

ρ (y) so ρ

(
y
β

)∣∣∣
I1
= ρ (y)|I1 . However, I1/β = I2 and

so conclude that f2 (y/β ) = f1 (y) or f2 (y) = f1 (βy).

• The next part proceeds recursively, as before, this time with L ρ|I2 =
1
β

ρ

(
y
β

)∣∣∣
I2

because the second term vanishes on I2. Thus, much as before, ρ

(
y
β

)∣∣∣
I2
=

ρ (y)|I2 . The interval arithmetic is that I2/β =
[

β−1
2 , 1

2β

]
⊂ I3 and so conclude

that f3 (y/β ) = f2 (y) or f3 (y) = f2 (βy). All three functions have been deter-
mined.

• Verify that the last segment works as desired. This time, all terms participate, so
L ρ|I3 = 1

β
ρ

(
y
β

)
+ρ

(
y
β
+ 1

2

)∣∣∣
I3

. The interval arithmetic is I3/β ⊂ I3 while

I3/β + 1/2 = I1 and so one expects to find that f3 (y) = f3

(
y
β

)
+ f1

(
y
β
+ 1

2

)
.

Plugging through, this is satisfied when β 3 −β 2 −1 = 0. But this is the defining
eqn for r2, so everything worked out.

That concludes the proof.
The L1 norm is

∫ 1
0 |ρ2| = 1/4r2

2. Note that ρ2 (m0) = ρ2 (1/2) = ρ2 (m1) = 1/2r2
2,

so its a saw tooth, with the teeth aligned.

6.2.3 Case n=3 (order ν = 3)

Let r3 be the positive real root of p3 (β ) = β 3 −β 2 −β −1. Some useful identities and
factoids

• r3 ≈ 1.839286755214161 and m0 ≈ 0.9196 and m1 ≈ 0.7718 and 1/r3 ≈ 0.5436.

Write four intervals I0 = [m0,1] and I1 = [m1,m0] and I2 =
[ 1

2 ,m1
]
and I3 =

[
0, 1

2

]
. This

works a bit different than the n = 2 case.

ρ3 (y) =



0 on I0

y−
(

m1 − 1
4β

)
on I1(

β+1
β

)
y−m1 on I2

βy−
(

m1 − 1
4β

)
on I3

solves Lβ ρ = ρ/β for β = r3. Written in this final form, it is not at all “obvious”.
Let’s look at the proof mechanism for insight.

• Starting with the midpoint (endpoint) m0 = β/2, iterate to obtain Tβ (m0) = m1
and Tβ (m1) = 1/2. This last iteration is the terminus. Thus, we have a collection
of intervals 0 < 1

2 < m1 < m0 < 1.

• Assign numberings to these intervals, from right to left, so that I0 = [m0,1] and
I1 = [m1,m0] and I2 =

[ 1
2 ,m1

]
and I3 =

[
0, 1

2

]
(just as before).
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• As a notational convenience, define restrictions on each interval, so that ρ (y)|Ik =
fk (y). Note that f0 = 0.

• Treat L ρ|Ik =
1
β

ρ (y)|Ik as a recurrence relation, so as to relate ρ (y)|Ik to other

intervals. This is ρ (y)|Ik = ρ

(
y
β

)∣∣∣
Ik

Θ(m0 − y)+ ρ

(
y
β
+ 1

2

)∣∣∣
Ik

Θ(m1 − y).

• The recurrence relation above requires two interval mappings. Define them as
the “left map” L : Ik 7→ Ik

β
and the “right map” R : Ik 7→ Ik

β
+ 1

2 .

• Lemma: LIk ⊆ Iℓ for some ℓ > k; likewise for RIk ⊆ Ir for some k > r. The
specific values of ℓ,r are TBD, as well as whether the subset relation is strict, or
an equality.

• Starting recursion withρ (y)|I0 = 0 gives no usable conclusions.

• The next interval is I1. The left map is L : I1 7→ I1
β
=
[

β−1
2 , 1

2

]
⊂ I3; the right map

is R : I1 7→ I1
β
+ 1

2 =
[

β

2 ,1
]
= I0.

• By recursion and restriction, deduce that f1 (y) = f3

(
y
β

)
+ f0

(
y
β
+ 1

2

)
. Since

f0 = 0, the second term vanishes, and f3 is determined by f1 (and vice-versa).

• Repeat the process above for I2 to get L : I2 7→ I2
β
=
[

1
2β
, β−1

2

]
⊂ I3 and R : I2 7→

I2
β
+ 1

2 =
[

β+1
2β

, β

2

]
= I1. The bound follows from (β +1)/2β = β (β −1)/2 =

m1 which follows from the defining polynomial p3 (β ) = 0.

• By recursion and restriction, f2 (y) = f3

(
y
β

)
+ f1

(
y
β
+ 1

2

)
. This gives f2 in

terms of f1. Thus, all three restrictions f1, f2 and f3 are determined by one-
another.

• Repeating again for I3 gives L : I3 7→ I3
β
=
[
0, 1

2β

]
⊂ I3 and R : I3 7→ I3

β
+ 1

2 =[
1
2 ,

β+1
2β

]
= I2.

• By recursion and restriction, f3 (y) = f3

(
y
β

)
+ f2

(
y
β
+ 1

2

)
. This gives an addi-

tional constraint between the functions.

• Make the Ansatz that f1 (y) = y− c for some constant c, to be determined.

• Plugging through gives f2 and f3. The final constraint fixes the value of c. The
result, reassembled, gives ρ3 as reported above.

The above is a rather long process, but is readily mechanized, and appears to describe
an algorithm that will work for any finite-order polynomial index. There are only a few
“tricky bits”. These are:

• The need to sort the midpoint iterates T j
β
(m0) into ascending order. This is

needed, in order to obtain a list of intervals Ik.
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• The determination of LIk ⊆ I j and likewise for RIk. This seems to require some
sort of brute-force elbow-grease; it there is a pattern, it is not yet clear.

The general algo is taken up below. But first one more special case.

6.2.4 Case n=4 (order ν = 4)

Perhaps having the midpoint less than 1/2 makes things better? Let r4 be the positive
root of β 4 −β 3 −1.

• r4 ≈ 1.380277569097613 with m0 ≈ 0.6901, m1 ≈ 0.2624, m2 ≈ 0.3622 and
1/r4 ≈ 0.7245.

This works as easily as the n = 2 case. As before, write five intervals I0 = [m0,1] and
I1 =

[ 1
2 ,m0

]
and I2 =

[
m2,

1
2

]
and I3 = [m1,m2] and I4 = [0,m1]. Then

ρ4 (y) =



0 on I0

y− 1
2 on I1

βy− 1
2 on I2

β 2y− 1
2 on I3

β 3y− 1
2 on I4

solves Lβ ρ = ρ/β for β = r4.
Unlike the n = 3 case, the regular pattern of the n = 2 case is reprised. One can

conclude that higher values of n are not necessarily messy, but can exhibit recurring
patterns seen at lower orders.

6.3 Quadratic eigenfunctions
The above examples all used piece-wise linear segments. One can also pursue parabo-
las. The general case is handled in the next section. A few specific cases are written
out below.

6.3.1 Case n=1 (order ν = 2)

For the n = 1 case, with β = ϕ , the function

ρ (y) =


ϕy2 − y+ 1

8 for 0 ≤ y < 1
2

y2 − y+ ϕ

8 for 1
2 ≤ y < ϕ

2
0 for ϕ

2 ≤ y ≤ 1

satisfies Lϕ ρ = λρ for λ = ϕ−2, and so its a decaying eigenfunction. This generalizes
to polynomial segments of any order. For a polynomial of order k, the eigenvalue will
be λ = ϕ−k. The general case is presented the next subsection.

159



The roots are

0 = ϕy2 − y+
1
8

solved by y =
ϕ −1

2

[
1±

√
ϕ −1

2ϕ

]

0 = y2 − y+
ϕ

8
solved by y =

1
2

[
1±

√
ϕ −1

2ϕ

]

with

ϕ −1
2

≈ 0.30901699√
1− ϕ

2
≈ 0.43701602

6.3.2 Case n=2 (order ν = 3)

For the n = 2 case, it is computed explicitly below. Copying the result, it is

ρ (y) =


β−1

β
y2 − β−1

β
y+ β (β−1)

4(β+1) for 0 ≤ y < m1 =
β (β−1)

2

(β −1)y2 − β−1
β

y+ β−1
4(β+1) for m1 ≤ y < m2 =

1
2

y2 − β−1
β

y+ β−1
4β (β+1) for 1

2 ≤ y < m0 =
β

2

0 for m0 ≤ y ≤ 1

6.4 General case
The general case was mostly described above, in the n = 3 subsection. Let’s abstract it
in full for general finite orbits of order ν .

• Starting with the midpoint m0 = β/2, obtain it’s first iterate m1 = β (β −1)/2,
and then the rest of them: m j = T j

β
(m0). The iteration is presumed to stop with

mν = 1/2 for an orbit of order ν . This is exactly as before, for finite orbits.

• Sort the midpoints into ascending order, so that 0 < ... < m0.

• Encode the order with a sequence L,R if m j+1 <m j or not ... (why? Not needed.)

• Define the intervals Ik from above, ordered so that Iν < Iν−1 < · · · < I1 < I0 =
[m0,1].

• The recursive interval maps are the “left map” L : Ik 7→ Ik
β

and the “right map”

R : Ik 7→ Ik
β
+ 1

2 .

• Lemma: LIk ⊆ Iℓ for some ℓ > k; likewise for RIk ⊆ Ir for some k > r. The
specific values of ℓ,r are TBD, as well as whether the subset relation is strict, or
an equality. It is always the case that LIν ⊂ Iν .
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• As a notational convenience, define the restriction ρ (y)|Ik = fk (y) . There will
be ν of these, not counting f0 = 0.

• Treat L ρ|Ik = λ ρ (y)|Ik as a recurrence relation, so as to relate ρ (y)|Ik to other
intervals. Note the (re-)appearance of λ as the explicit eigenvalue; it was im-
plicitly taken as λ = 1/β in the earlier examples. The recurrence relation,
with this generalized eigenvalue, is then λβ ρ (y)|Ik = ρ

(
y
β

)∣∣∣
Ik

Θ(m0 − y) +

ρ

(
y
β
+ 1

2

)∣∣∣
Ik

Θ(m1 − y).

• Employ the recurrence relation to obtain ν relations between the interval maps
fk. Of these, ν − 1 interrelate the fk to one-another, while the last serves to fix
any constants.

• This recurrence relation is explicitly λβ fk (y)= fLk

(
y
β

)
Θ(m0 − y)+ fRk

(
y
β
+ 1

2

)
Θ(m1 − y),

where Lk = j when I j ⊆ LIk and likewise for Rk.

• Make the Ansatz that fk (y) = ∑ j ak jy j for some unknown constants ak j to be de-
termined. Plugging through, and collecting terms by powers of y gives equations
for the ak j. The leading term gives an expression for λ .

• Lemma: if f1 (y) is of order k then the eigenvalue will be λ = β−k.

There are three unresolved issues with the above: (1) the need to sort midpoints, (2) the
precise form of the interval inclusion relations, and (3) the daunting algebra for fixing
the ak j and λ . The tables in the next section try to gain insight by writing out explicit
cases. Unfortunately, they shine no light on the situation. Ignore them, and skip them
and move to the section after.

6.5 Interval Inclusion Tables
The tables below try to gain insight by writing out explicit cases, but they shine no light
on the situation. Ignore them, and hop to the next section.

Perhaps some insight can be gained into the midpoint cycles problem by examining
the special cases again? These are given in the table below.
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ν n m j 2n+1 cycle
2 1 1,0 11 -

3 2 1,2,0 101 -
3 2,1,0 111 (12)

4
4 1,2,3,0 1001 -
6 2,3,1,0 1101 (123)
7 3,2,1,0 1111 (13)

5

8 1,2,3,4,0 10001 -
10 3,1,4,2,0 10101 (1342)
12 2,3,4,1,0 11001 (1234)
13 2,4,1,3,0 11011 (1243)
14 3,4,2,1,0 11101 (1324)
15 4,3,2,1,0 11111 (14)(23)

Legend:

• The column labeled m j gives the index order for j such that 0 < · · ·< m j < · · ·<
m0.

• The column 2n+1 shows the midpoint bit-sequence, as usual.

• The cycle column shows the permutation of the midpoints in cycle notation.

Hmm. Nothing compelling in that table.
Perhaps some insight can be gained into the interval inclusion problem by examin-

ing the special cases? These are given in the table below.

ν n m j LI5 LI4 LI3 LI2 LI1 RI5 RI4 RI3 RI2 RI1

2 1 1,0 ⊂ I2 ⊂ I2 = I1 = I0

3
2 1,2,0 ⊂ I3 ⊂ I3 = I2 = I1 ⊂ I0 ⊂ I0

3 2,1,0 ⊂ I3 ⊂ I3 ⊂ I3 = I2 = I1 = I0

4
4 1,2,3,0 ⊂ I4 ⊂ I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0 ⊂ I0

6 2,3,1,0 ⊂ I4 ⊂ I4 ⊂ I3 ⊂ I3 = I2 ⊂ I1 ⊂ I1 = I0

7 3,2,1,0 ⊂ I4 ⊂ I4 ⊂ I4 ⊂ I4 = I3 = I2 = I1 = I0

5

8 1,2,3,4,0 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0 ⊂ I0 ⊂ I0

10 3,1,4,2,0 ⊂ I5 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0 ⊂ I0

12 2,3,4,1,0 ⊂ I5 ⊂ I5 = I4 ⊂ I3 ⊂ I3 = I2 ⊂ I1 ⊂ I1 ⊂ I1 = I0

13 2,4,1,3,0 ⊂ I5 ⊂ I5 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 ⊂ I0 ⊂ I0

14 3,4,2,1,0 ⊂ I5 ⊂ I5 ⊂ I4 ⊂ I4 ⊂ I4 = I3 ⊂ I2 ⊂ I2 = I1 = I0

15 4,3,2,1,0 ⊂ I5 ⊂ I5 ⊂ I5 ⊂ I5 ⊂ I5 = I4 = I3 = I2 = I1 = I0

The columns labeled LIk and RIk indicate what happens when L,R are applied to Ik.
The result is marked as equality or strict inclusion. Although there is a pattern to the
above table, it is difficult to express in words. More progress can be made by encoding
the binary relationships as matrices. See next section.
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6.5.1 Interval inclusion incidence matrices

Attempt to gain insight into the interval inclusions by writing matrices and graphs. The
matrices are square matrices B,C, having matrix entries Bk j = Θ(I j ⊆ LIk) where

Θ(I j ⊆ LIk) =

{
1 if I j ⊆ LIk

0 if I j ⊈ LIk

is the inclusion membership function. Likewise Ck j = Θ(I j ⊆ RIk). In tabular form:
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ν n m j B C seq ind P D

2 1 1,0
[
·1
·1

] [
· ·
1 ·

] [
2
1

] [
L
R

] [
· 1
1 ·

] [
· 1
11

]

3 2 1,2,0

[·1 ·
· · 1
· · 1

] [ · · ·
· · ·
1 · ·

] [
2
3
1

] [
L
L
R

] [ · 1 ·
· · 1
1 · ·

] [ · 1 ·
· · 1
1 · 1

]

3 2,1,0

[· ·1
· ·1
· ·1

] [ · · ·
1 · ·
· 1 ·

] [
3
1
2

] [
L
R
R

] [ · · 1
1 · ·
· 1 ·

] [ · · 1
1 · 1
· 11

]

4
4 1,2,3,0

·1 · ·
· · 1 ·
· · · 1
· · · 1


 · · · ·
· · · ·
· · · ·
1 · · ·


2

3
4
1


L

L
L
R


 · 1 · ·
· · 1 ·
· · · 1
1 · · ·


 · 1 · ·
· · 1 ·
· · · 1
1 · · 1


6 2,3,1,0

· ·1 ·
· ·1 ·
· · · 1
· · · 1


 · · · ·

1 · · ·
1 · · ·
· 1 · ·


3

1
4
2


L

R
L
R


 · · 1 ·

1 · · ·
· · · 1
· 1 · ·


 · · 1 ·

1 · 1 ·
1 · · 1
· 1 · 1


7 3,2,1,0

· · ·1· · ·1
· · ·1
· · ·1


 · · · ·

1 · · ·
· 1 · ·
· · 1 ·


4

1
2
3


L

R
R
R


 · · · 1

1 · · ·
· 1 · ·
· · 1 ·


 · · · 1

1 · · 1
· 1 · 1
· · 11



5

8 1,2,3,4,0


·1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
· · · · 1



· · · · ·
· · · · ·
· · · · ·
· · · · ·
1 · · · ·




2
3
4
5
1




L
L
L
L
R



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1



10 3,1,4,2,0


· ·1 · ·
· · · 1 ·
· · · · 1
· · · · 1
· · · · 1



· · · · ·
· · · · ·
· · · · ·
1 · · · ·
· 1 · · ·




3
4
5
1
2




L
L
L
R
R



· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·



· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1



12 2,3,4,1,0


· ·1 · ·
· ·1 · ·
· · · 1 ·
· · · · 1
· · · · 1



· · · · ·
1 · · · ·
1 · · · ·
1 · · · ·
· 1 · · ·




3
1
4
5
2




L
R
L
L
R



· · 1 · ·
1 · · · ·
· · · 1 ·
· · · · 1
· 1 · · ·



· · 1 · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1
· 1 · · 1



13 2,4,1,3,0


· · ·1 ·
· · · · 1
· · · · 1
· · · · 1
· · · · 1



· · · · ·
· · · · ·
1 · · · ·
· 1 · · ·
· · 1 · ·




4
5
1
2
3




L
L
R
R
R



· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·



· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1



14 3,4,2,1,0


· · ·1 ·
· · ·1 ·
· · ·1 ·
· · · · 1
· · · · 1



· · · · ·
1 · · · ·
· 1 · · ·
· 1 · · ·
· · 1 · ·




4
1
2
5
3




L
R
R
L
R



· · · 1 ·
1 · · · ·
· 1 · · ·
· · · · 1
· · 1 · ·



· · · 1 ·
1 · · 1 ·
· 1 · 1 ·
· 1 · · 1
· · 1 · 1



15 4,3,2,1,0


· · · ·1
· · · ·1
· · · ·1
· · · ·1
· · · ·1



· · · · ·
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·




5
1
2
3
4




L
R
R
R
R



· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11


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The structure of the B and C matrices have no strong, easy-to-describe pattern that
jumps out. It is all more subtle. First, some general comments. These all follow from
the nature of the interval inclusions, and are fairly easily derived.

• The sum D = B+C never has any entries that have 2 in it. This follows from the
L,R maps.

• The first column of B is always zero. This follows because L always shifts down;
the topmost interval can never be a subinterval of some other interval.

• The first column of C always has at least one entry that is one. This follows
because R always shifts up, and some interval must always be above the one or
more lower intervals.

• There are one or more non-zero entries in the last column of B.

• The last column of C is always all-zeros.

• Every row in B has exactly one non-zero entry. This follows, because every
interval is a subinterval of one and only one other interval.

• The top row of C is always all-zeros.

• It is always the case that B(ν ,ν) = 1 and B(ν −1,ν) = 1.

A more opaque but important pattern is the shift structure across the two. For every row
of B and C, the following holds: If B(k, j) = 1, then one and only one of the following
possibilities hold:

• B(k+1, j+1) = 1 and C (k+1,1) = 0

• B(k+1, j+1) = 1 and there does not exist any i such that C (k, i) = 1 and
C (k+1, i+1) = 1

• B(k+1, j+1) = 0 and C (k+1,1) = 1

• B(k+1, j+1) = 0 and there exists i such that C (k, i) = 1 and C (k+1, i+1) = 1

• j = ν and C (k+1,1) = 1

• j = ν and there exists i such that C (k, i) = 1 and C (k+1, i+1) = 1

Since for every row k, there is always some column j for for which B(k, j) = 1, the
above holds for all rows. It is saying that there is always a shift, either in the B matrix,
or in the C matrix, and never both at the same time, for every row.

The six bullet points above are expressed as logic statements written in English.
To be useful for calculations, they need to be converted into formulas. This will be
needed later, in the section on the continuous spectrum. The structure above can be
captured by two distinct functions. One is a sequencing function: given interval k (row
k), return the next shift j + 1; the other function is the sequence indicator function:
given interval k, was the shift obtained on the left or right? The table above shows
these two functions, labeled as “seq” and “ind”.
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The “seq” function is a permutation; the corresponding permutation matrix is shown
in the P column. The “sporadic” matrix S = B+C−P is what is left over, after remov-
ing P.

The indicator function “ind” shows how the permutation matrix is assembled from
B and C. One has that

P(k, j) = Θ(ind(k) = L)B(k, j)+Θ(ind(k) = R)C (k, j)

Pk j = δind(k),LBk j +δind(k),RCk j

where Θ(x) = 1 if x evaluates to true, else Θ(x) = 0. The δab is the Kronecker delta.
The sequence function “seq” is the permutation, expressed as a cycle:

Pk j = δseq(k), j = Θ(seq(k) = j)

It is currently unclear how to obtain any of these matrices and functions, other than to
brute-force iterate the midpoint, sort the midpoints into order, compute the intervals,
and compute the overlaps. This is an algorithmic process that does not provide much
insight.

The permutation matrices are orthogonal, in that P−1 = PT . There are some addi-
tional sporadic identities. For P = Pn for index n, note that PT

2 = P3 and PT
7 = P4 and

PT
15 = P8 and PT

13 = P10. Unclear how these interchanges might be meaningful; there’s
no corresponding relationship between P12 and P14.

The product PT D is lower-triangular, and thus explicitly solvable. PT D is NOT
upper-triangular.

The D matrix encodes the generating polynomial. That is, det [D−λ I] = pn (λ ) so
that det [D−β I] = 0.

Each matrix D can be taken to be the adjacency matrix for a graph. These are shown
below; they show how intervals mix into one-another.

ν n D diagram

2 1
[
· 1
11

]
12 n=1

3 2

[ · 1 ·
· · 1
1 · 1

]
123 n=2

3

[ · · 1
1 · 1
· 11

]
123 n=3

4
4

 · 1 · ·
· · 1 ·
· · · 1
1 · · 1

 234 n=41
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ν n D diagram

6

 · · 1 ·
1 · 1 ·
1 · · 1
· 1 · 1

 234 n=61

7

 · · · 1
1 · · 1
· 1 · 1
· · 11

 234 n=71

5

8


· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1

 345

n=8

2 1

10


· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1

 345

n=10

2 1

12


· · 1 · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1
· 1 · · 1

 345

n=12

2 1

13


· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1

 345

n=13

2 1

14


· · · 1 ·
1 · · 1 ·
· 1 · 1 ·
· 1 · · 1
· · 1 · 1

 345

n=14

2 1

15


· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11

 345

n=15

2 1

Left-moving arrows indicate LIk 7→ I j = Ik/β while right-moving arrows indicate
RIk 7→ I j = Ik/β + 1/2. If only one arrow lands on an interval, then the map is an
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equality (one-to-one and onto); otherwise it is an inclusion. The arrow-heads are drawn
in proper interval sequence; the L and R maps never alter the overall sequence. Due to
the self-inclusion LIν 7→ Iν = Iν/β for the left-most interval, for all orders ν , this map is
always an inclusion (recursively splitting the interval into ever-smaller pieces). These
in turn are mapped back to the right, eventually creating a set of enpoint mappings that
is dense in the unit interval. Note also that there is always a map LIν−1 7→ Iν for all
orders ν .

Some open questions:

• Why these graphs, and not others?

• Are these somehow the prime graphs, in that all other (measure-preserving)
graphs can be constructed from these? For example, all Markovian two-point
graphs can be taken as linear combinations of the n = 0 and n = 1 graphs. In
this example, Mi j = aδi1δ j1+bδi2δ j2+c

(
δi1δ j1 +δi2δ j1 +δi1δ j2

)
represents all

possible 2× 2 graphs, where as much material flows into a vertex, as flows out
of it. The a and b terms are just the n = 0 graph, while the c term is the n = 1
graph. (A Markov normalization additionally requires that a+ c = b+ c = 1.)

Another table; this one shows that DPT is lower-triangular, but PT D is not.

ν n D S P DPT PT D

2 1
[
· 1
11

] [
· ·
·1

] [
· 1
1 ·

] [
1 ·
11

] [
11
· 1

]

3 2

[ · 1 ·
· · 1
1 · 1

] [· · ·
· · ·
· ·1

] [ · 1 ·
· · 1
1 · ·

] [
1 · ·
· 1 ·
· 11

] [
1 · 1
· 1 ·
· · 1

]

3

[ · · 1
1 · 1
· 11

] [· · ·
· ·1
· ·1

] [ · · 1
1 · ·
· 1 ·

] [
1 · ·
11 ·
1 · 1

] [
1 · 1
· 11
· · 1

]

4
4

 · 1 · ·
· · 1 ·
· · · 1
1 · · 1


· · · ·· · · ·
· · · ·
· · ·1


 · 1 · ·
· · 1 ·
· · · 1
1 · · ·


1 · · ·
· 1 · ·
· · 1 ·
· · 11


1 · · 1
· 1 · ·
· · 1 ·
· · · 1


6

 · · 1 ·
1 · 1 ·
1 · · 1
· 1 · 1


 · · · ·
· ·1 ·
1 · · ·
· · · 1


 · · 1 ·

1 · · ·
· · · 1
· 1 · ·


1 · · ·

11 · ·
· 11 ·
· · 11


1 · 1 ·
· 1 · 1
· · 1 ·
1 · · 1


7

 · · · 1
1 · · 1
· 1 · 1
· · 11


· · · ·· · ·1
· · ·1
· · ·1


 · · · 1

1 · · ·
· 1 · ·
· · 1 ·


1 · · ·

11 · ·
1 · 1 ·
1 · · 1


1 · · 1
· 1 · 1
· · 11
· · · 1


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ν n D S P DPT PT D

5

8


· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1



· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · ·1



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·




1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · 11




1 · · · 1
· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1



10


· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1



· · · · ·
· · · · ·
· · · · ·
· · · ·1
· · · ·1



· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·




1 · · · ·
· 1 · · ·
· · 1 · ·
· · 11 ·
· · 1 · 1




1 · · · 1
· 1 · · 1
· · 1 · ·
· · · 1 ·
· · · · 1



12


· · 1 · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1
· 1 · · 1



· · · · ·
· ·1 · ·
1 · · · ·
1 · · · ·
· · · ·1



· · 1 · ·
1 · · · ·
· · · 1 ·
· · · · 1
· 1 · · ·




1 · · · ·
11 · · ·
· 11 · ·
· 1 · 1 ·
· · · 11




1 · 1 · ·
· 1 · · 1
· · 1 · ·
1 · · 1 ·
1 · · · 1



13


· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1



· · · · ·
· · · · ·
· · · ·1
· · · ·1
· · · ·1



· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·




1 · · · ·
· 1 · · ·
· 11 · ·
· 1 · 1 ·
· 1 · · 1




1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 1 ·
· · · · 1



14


· · · 1 ·
1 · · 1 ·
· 1 · 1 ·
· 1 · · 1
· · 1 · 1



· · · · ·
· · ·1 ·
· · ·1 ·
·1 · · ·
· · · · 1



· · · 1 ·
1 · · · ·
· 1 · · ·
· · · · 1
· · 1 · ·




1 · · · ·
11 · · ·
1 · 1 · ·
· · 11 ·
· · · 11




1 · · 1 ·
· 1 · 1 ·
· · 1 · 1
· · · 1 ·
· 1 · · 1



15


· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11



· · · · ·
· · · ·1
· · · ·1
· · · ·1
· · · ·1



· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·




1 · · · ·
11 · · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1




1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11
· · · · 1



As before, there is no particularly obvious way to obtain any of these matrices,
except by brute-force iteration of the midpoints.

Another table. This one labels intervals according to the iteration. In this labeling,
call it J, the interval Jk is the interval to the left of the midpoint iterate mk. Define
Q as the permutation that brings these “iteration-order” intervals into “sorted order”
intervals. Nothing particularly interesting shows up here, and it seems that QT DQ is
just messy. The progression 4,6,7 seems to have a zipper pattern, but that zipper breaks
at 10, which looks a mess.

ν n m j D P Q QT DQ

2 1 1,0
[
· 1
11

] [
· 1
1 ·

] [
1 ·
· 1

] [
· 1
11

]
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ν n m j D P Q QT DQ

3 2 1,2,0

[ · 1 ·
· · 1
1 · 1

] [ · 1 ·
· · 1
1 · ·

] [
1 · ·
· · 1
· 1 ·

] [ · · 1
11 ·
· 1 ·

]

3 2,1,0

[ · · 1
1 · 1
· 11

] [ · · 1
1 · ·
· 1 ·

] [
1 · ·
· 1 ·
· · 1

] [ · · 1
1 · 1
· 11

]

4
4 1,2,3,0

 · 1 · ·
· · 1 ·
· · · 1
1 · · 1


 · 1 · ·
· · 1 ·
· · · 1
1 · · ·


1 · · ·
· · · 1
· · 1 ·
· 1 · ·


 · · · 1

11 · ·
· 1 · ·
· · 1 ·


6 2,3,1,0

 · · 1 ·
1 · 1 ·
1 · · 1
· 1 · 1


 · · 1 ·

1 · · ·
· · · 1
· 1 · ·


1 · · ·
· 1 · ·
· · · 1
· · 1 ·


 · · · 1

1 · · 1
· 11 ·
1 · 1 ·


7 3,2,1,0

 · · · 1
1 · · 1
· 1 · 1
· · 11


 · · · 1

1 · · ·
· 1 · ·
· · 1 ·


1 · · ·
· 1 · ·
· · 1 ·
· · · 1


 · · · 1

1 · · 1
· 1 · 1
· · 11



5

8 1,2,3,4,0


· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·




1 · · · ·
· · · · 1
· · · 1 ·
· · 1 · ·
· 1 · · ·



· · · · 1
11 · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



10 3,1,4,2,0


· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1



· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·




1 · · · ·
· · 1 · ·
· · · · 1
· 1 · · ·
· · · 1 ·



· 1 · · ·
· 1 · · ·
· · 11 ·
· · · · 1
1 · 1 · ·



12 2,3,4,1,0


· · 1 · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1
· 1 · · 1



· · 1 · ·
1 · · · ·
· · · 1 ·
· · · · 1
· 1 · · ·




1 · · · ·
· 1 · · ·
· · · · 1
· · · 1 ·
· · 1 · ·



· · · · 1
1 · · · 1
· 11 · ·
1 · 1 · ·
1 · · 1 ·



13 2,4,1,3,0


· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1



· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·




1 · · · ·
· · · 1 ·
· 1 · · ·
· · · · 1
· · 1 · ·



· 1 · · ·
· · 11 ·
· · · 1 ·
· · · 11
1 · · 1 ·



14 3,4,2,1,0


· · · 1 ·
1 · · 1 ·
· 1 · 1 ·
· 1 · · 1
· · 1 · 1



· · · 1 ·
1 · · · ·
· 1 · · ·
· · · · 1
· · 1 · ·




1 · · · ·
· 1 · · ·
· · 1 · ·
· · · · 1
· · · 1 ·



· · · · 1
1 · · · 1
· 1 · · 1
· · 11 ·
· 1 · 1 ·



15 4,3,2,1,0


· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11



· · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·




1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1



· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11


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As before, there is no particularly obvious way to obtain any of these matrices,
except by brute-force iteration of the midpoints.

6.5.2 Change of basis

The matrix D encodes the the eigenvalues, in that det(D−λ I) = pn (λ ) and, as always,
the largest real eigenvalue is λ = β . The eigenvectors are interpreted as distributions,
in the basis where ek 7→ Θ(x ∈ Ik): that is, a function that is one on the interval Ik but
zero elsewhere. By contrast, the Gelfond–Parry until invariant measure was stated in
terms of Θ(x ≤ m j). Explicitly, it is µ (x) = F−1

∑
∞
k=0 β− jΘ(x ≤ m j). We now wish

to explore a change of basis from ek 7→ Θ(x ∈ Ik) to u j 7→ Θ(x ≤ m j). This is not hard,
it’s just a triangular matrix. The painful part is to provide an adequate notation for all
of this.

As always, the midpoints are mk = T k (m0) with m0 = β/2. They are sorted so
that 0 < · · · < m j < · · · < m0 < 1. These define intervals, numbered right to left, with
I0 = [m0,1] and I1 = [mπ ,m0] and I2 = [mπ2 ,mπ ] and so Ik = [m

πk ,mπk−1 ] where π is the
permutation that places the midpoints in sorted order. It is the same as the permutation
matrix P given earlier, except for an off-by-one in the numbering. For order ν there
are a total of ν +1 intervals, with the left-most being Iν = [0,mπν−1 ] since mπν = 0 by
definition. That is, the midpoints in sorted order are

0 = mπν < mπν−1 < mπν−2 < · · ·< m j = mπ i < · · ·< mπ < m0 < 1

With this notation, the union of intervals is

[0,m j] =
⋃

k:mk≤m j

[mπk,mk]

where πk is the midpoint immediately to the left, in sorted order, not to be confused
with πk which is the permutation iterated k times. The notation is killing me. For a
fixed j, the midpoint m j appears at location i in the sort order: there is some integer i
such that it is given by the permutation π i = j. Thus, the right-most interval containing
m j is Ii+1 = [mπ j,m j] = [mπ i+1 ,mπ i ]. The union runs over a total of ν − i intervals to
the left of m j:

[0,m j] =
ν⋃

k=i+1; j=π i

Ik

Fiddling with equivalent notation,

Θ(x ≤ m j) =
ν

∑
k=i+1; j=π i

Θ(x ∈ Ik)

which is the change of basis

u j =
ν

∑
k=i+1; j=π i

ek

A concrete example follows.
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Change of basis, explicit example So as not to lose track of what we are doing
here, consider the case of ν = 2,n = 1 which has β = ϕ the golden ratio and 0 <
m1 = ϕ (ϕ −1)/2 < m0 = ϕ/2 < 1 with intervals I2 = [0,m1] and I1 = [m1,m0]. In
the union basis, the intervals are U1 = [0,m1] = I2 and U0 = [0,m0] = I2 ∪ I1 and the
corresponding vectors are u1 = e2 and u0 = e1 + e2. In the interval basis, we solve for
Dψ = λψ with

D =

[
0 1
1 1

]
This has the solution

ψ =

[
1
ϕ

]
= e1 +ϕe2 = Θ(x ∈ I1)+ϕΘ(x ∈ I2) =

{
ϕ for 0 ≤ x < m1

1 for m1 ≤ x < m0

which is just the usual Gelfond–Parry invariant measure, up to a normalization con-
stant. In the union basis, this is

ψ = u0 +
1
ϕ

u1 = Θ(x ≤ m0)+
1
ϕ

Θ(x < I1) =

{
ϕ for 0 ≤ x < m1

1 for m1 ≤ x < m0

since, of course, 1+1/ϕ = ϕ for the golden mean. These are equivalent descriptions,
with the union form having the familiar shape

ψ =
ν−1

∑
j=0

1
β j Θ(x ≤ m j) =

ν−1

∑
j=0

1
β j u j

The change of basis can be written as ek = Mk ju j with the matrix M being

M =

[
1 0
1 1

]
M−1 =

[
1 0
−1 1

]
In the union basis, we have

H = M−1DM =

[
1 1
1 0

]
satisfying Hψ = ϕψ with ψ = u0 +u1/ϕ exactly as before.

Summary Table Armed with appropriate notation and a worked example, a table of
explicit values for the remaining low-order cases provides some insight. The inverse
M−1 has an interesing form: it appears to be a copy of the permutation Q from before,
minus a column-shifted copy of Q. This is perhaps not a surprise.
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ν n m j D M M−1 H = M−1DM K = M−1CM

2 1 1,0
[
· 1
11

] [
1 ·
11

] [
1 ·
−11

] [
11
1 ·

] [
· ·
1 ·

]

3 2 1,2,0

[ · 1 ·
· · 1
1 · 1

] [
1 · ·
1 · 1
111

] [
1 · ·
· −11
−1 1 ·

] [
1 · 1
1 · ·
· 1 ·

] [ · · ·
1 · ·
· · ·

]

3 2,1,0

[ · · 1
1 · 1
· 11

] [
1 · ·
11 ·
111

] [
1 · ·
−1 1 ·
· −11

] [
111
1 · ·
· 1 ·

] [ · · ·
1 · ·
· 1 ·

]

4
4 1,2,3,0

 · 1 · ·
· · 1 ·
· · · 1
1 · · 1


1 · · ·

1 · · 1
1 · 11
1111


 1 · · ·

· · −11
· −1 1 ·
−1 1 · ·


1 · · 1

1 · · ·
· 1 · ·
· · 1 ·


 · · · ·

1 · · ·
· · · ·
· · · ·


6 2,3,1,0

 · · 1 ·
1 · 1 ·
1 · · 1
· 1 · 1


1 · · ·

11 · ·
11 · 1
1111


 1 · · ·
−1 1 · ·
· · −11
· −1 1 ·


11 · 1

1 · · ·
· 1 · ·
· · 1 ·


 · · · ·

1 · · ·
· 1 · ·
· · · ·


7 3,2,1,0

 · · · 1
1 · · 1
· 1 · 1
· · 11


1 · · ·

11 · ·
111 ·
1111


 1 · · ·
−1 1 · ·
· −1 1 ·
· · −11


1111

1 · · ·
· 1 · ·
· · 1 ·


 · · · ·

1 · · ·
· 1 · ·
· · 1 ·



5

8 1,2,3,4,0


· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1




1 · · · ·
1 · · · 1
1 · · 11
1 · 111
11111




1 · · · ·
· · · −11
· · −1 1 ·
· −1 1 · ·

−1 1 · · ·




1 · · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · ·
1 · · · ·
· · · · ·
· · · · ·
· · · · ·



10 3,1,4,2,0


· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1




1 · · · ·
1 · 1 · ·
1 · 1 · 1
111 · 1
11111




1 · · · ·
· · −1 1 ·

−1 1 · · ·
· · · −11
· −1 1 · ·




1 · 1 · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · ·
1 · · · ·
· · · · ·
· ·1 · ·
· · · · ·



12 2,3,4,1,0


· · 1 · ·
1 · 1 · ·
1 · · 1 ·
1 · · · 1
· 1 · · 1




1 · · · ·
11 · · ·
11 · · 1
11 · 11
11111




1 · · · ·
−1 1 · · ·
· · · −11
· · −1 1 ·
· −1 1 · ·




11 · · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · ·
1 · · · ·
· 1 · · ·
· · · · ·
· · · · ·



13 2,4,1,3,0


· · · 1 ·
· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1




1 · · · ·
1 · · 1 ·
11 · 1 ·
11 · 11
11111




1 · · · ·
· −1 1 · ·
· · · −11

−1 1 · · ·
· · −1 1 ·




11 · 11
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · ·
1 · · · ·
· 1 · · ·
· · · · ·
· · ·1 ·



14 3,4,2,1,0


· · · 1 ·
1 · · 1 ·
· 1 · 1 ·
· 1 · · 1
· · 1 · 1




1 · · · ·
11 · · ·
111 · ·
111 · 1
11111




1 · · · ·
−1 1 · · ·
· −1 1 · ·
· · · −11
· · −1 1 ·




111 · 1
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · ·
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · · ·



15 4,3,2,1,0


· · · · 1
1 · · · 1
· 1 · · 1
· · 1 · 1
· · · 11




1 · · · ·
11 · · ·
111 · ·
1111 ·
11111




1 · · · ·
−1 1 · · ·
· −1 1 · ·
· · −1 1 ·
· · · −11




11111
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· · · · ·
1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·


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Visible in the above is the general form, which is exactly what were expecting. It is

H =


b0 b1 · · · bν−1 bν

1 0 · · · 0 0
0 1 0 0
...

. . .
...

0 0 · · · 1 0


This is exactly H = βHβ = BT from before, in the β -Hessenberg section. This is
transpose of eqn 39. Eigenvectors are exacly like before: Hψ = λψ is solved by λ

being any root to pn (λ ) = 0 and the eigenvector is ψ = ∑
ν−1
j=0 λ− ju j. For λ = β this

is identical to the Gelfond–Parry solution. So this was a very round-about check of an
expected result.

The column K = M−1CM seems to almost have a predictable pattern to it. If it
did, then the rest of the table could be filled in from that pattern. But that’s the core
issue: all of these structures seem to have some almost regular, predictable pattern, but
exactly what that is remains elusive. Every variant seems to require explicit midpoint
iteration; a simpler algorithmic or recursive description remains unmanifested.

6.6 Recursive Rework
Clearly, writing out the intervals, sorting them and labeling them blocks the path to
generalizing to the non-finite orbits. But perhaps the sorting is not needed, and instead
can be inferred directly from the recursive moves. The key ingredients were

• This recurrence relation λβ fk (y)= fLk

(
y
β

)
Θ(m0 − y)+ fRk

(
y
β
+ 1

2

)
Θ(m1 − y),

where Lk = j when I j ⊆ LIk and likewise for Rk.

• Since the fk are defined as restrictions, the extra Θ terms are superfluous: the
interval restrictions already enforce the relations. Thus, one can safely write
λβ fk (y) = fLk

(
y
β

)
+ fRk

(
y
β
+ 1

2

)
.

• The Ansatz that fk (y) = ∑ j ak jy j for some unknown constants ak j to be deter-
mined. Plugging through, and collecting terms by powers of y gives equations
for the ak j. The leading term gives an expression for λ .

Starting with only f1 it is enough to work with the empty label 1 and then move to L1
and R1 and thence L21,LR1,RL1,R21 for the next set of intervals.

Based on this observation, it seems that a better numbering scheme is to use the
visitation labels (below).

6.6.1 Case n=2 (order ν = 3) quadratic

Apply the above algo for the n = 2 case, look at the steps explicitly, and see how it
goes. This is very verbose.

• Polynomial: p2 (β ) = β 3 −β 2 −1
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• Root: r2 ≈ 1.465571231876768 · · ·

• Midpoints:

m0 = β/2 ≈ 0.732785615938384
m1 = β (β −1)/2 ≈ 0.3411639019140096

m2 = β
2 (β −1)/2 = 1/2

Thus 0 < m1 < m2 < m0 < 1.

• Intervals I3 = [0,m1]< I2 = [m1,m2]< I1 = [m2,m0]< I0 = [m0,1].

• The recursive interval maps are the “left map” L : Ik 7→ Ik
β

and the “right map”

R : Ik 7→ Ik
β
+ 1

2 .

• Interval inclusions:

ν n m j LI3 LI2 LI1 LI0 RI3 RI2 RI1

3 2 1,2,0 ⊂ I3 ⊂ I3 = I2 ⊂ I1 = I1 ⊂ I0 ⊂ I0

• The segments are fk (y) = ∑ j ak jy j so that

f0 (y) = 0

f1 (y) = a10 +a11y+a12y2

f2 (y) = a20 +a21y+a22y2

f3 (y) = a30 +a31y+a32y2

• The recurrence relation is λβ fk (y) = fLk

(
y
β

)
+ fRk

(
y
β
+ 1

2

)
, where Lk = j

when I j ⊆ LIk and likewise for Rk. Based on the inclusion table, this is

λβ f1 (y) = f2

(
y
β

)
λβ f2 (y) = f3

(
y
β

)
λβ f3 (y) = f3

(
y
β

)
+ f1

(
y
β
+

1
2

)
Note this is a linear equation.
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• Plugging through,

λβ
(
a10 +a11y+a12y2)= a20 +

a21

β
y+

a22

β 2 y2

λβ
(
a20 +a21y+a22y2)= a30 +

a31

β
y+

a32

β 2 y2

λβ
(
a30 +a31y+a32y2)= a30 +

a31

β
y+

a32

β 2 y2 +a10 +a11

(
y
β
+

1
2

)
+a12

(
y
β
+

1
2

)2

= a30 +
a31

β
y+

a32

β 2 y2 +a10 +
a11

2
+

a11

β
y+

a12

4
+

a12

β
y+

a12

β 2 y2

Collecting terms,

λβa10 = a20 λβa11 =
a21

β
λβa12 =

a22

β 2

λβa20 = a30 λβa21 =
a31

β
λβa22 =

a32

β 2

λβa30 = a30 +a10 +
a11

2
+

a12

4

λβa31 =
1
β
(a31 +a11 +a12)

λβa32 =
1

β 2 (a32 +a12)

Reducing, last one first:

λβa32 =
1

β 2 (a32 +a12)

=
1

β 2

(
a32 +

a22

λβ 3

)
=

1
β 2

(
a32 +

a32

λ 2β 6

)
λβ

3 = 1+
1

λ 2β 6

0 = λ
3
β

9 −λ
2
β

6 −1

λ =
1

β 2

176



Plugging in for λ for readability:

a10 = βa20 a11 = a21 a12 =
a22

β

a20 = βa30 a21 = a31 a22 =
a32

β

a30 = β

(
a30 +a10 +

a11

2
+

a12

4

)
0 = a11 +a12

a32 =
1
β
(a32 +a12)

• The above were regular and algorithmic, and can be gotten by uniform opera-
tions. The operations below are ad hoc, solving the assorted relations in some
arbitrary order. They are sloppy Gaussian elimination, sloppy because not ex-
plicitly manifested. But for now, its quick and easy. So lets do it. Working
back,

a12 = a32
β −1

β

a22 = a32 (β −1)
a11 = a21 = a31 =−a12

and finally, the constant term:

a30 = β

(
a30 +a10 +

a11

2
+

a12

4

)
= β

(
a30 +β

2a30 −a32
β −1

4β

)
0 = a30

(
β

3 +β −1
)
−a32

β −1
4

a30 = a32
β −1

4(β 3 +β −1)

= a32
β −1

4β (β +1)

and

a20 = a32
β −1

4(β +1)

a10 = a32
β (β −1)
4(β +1)

Yuck, what a mess.
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• The second from last step can be written as a matrix equation. It is:

λ



a10
a20
a30
a11
a21
a31
a12
a22
a32


=

1
β



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 1 1

2 0 0 1
4 0 0

0 0 0 0 1
β

0 0 0 0
0 0 0 0 0 1

β
0 0 0

0 0 0 1
β

0 1
β

1
β

0 0
0 0 0 0 0 0 0 1

β 2 0
0 0 0 0 0 0 0 0 1

β 2

0 0 0 0 0 0 1
β 2 0 1

β 2





a10
a20
a30
a11
a21
a31
a12
a22
a32


and so indeed, the lower-right corner is solved first. The off-diagonal blocks are
coupling between the different orders.

• Anyway, the above 9×9 matrix is the representation of the FP operator Lβ , in
the monomial basis, for this specific value of β .

• The shift-like structure arises from the interval inclusion table. Alas, the interval
inclusion table is cryptic.

Lets summarize the results. Setting a32 = 1 as an overall scale factor, the following is
the eigenfunction, obtained above:

ρ (y) =


β−1

β
y2 − β−1

β
y+ β (β−1)

4(β+1) for 0 ≤ y < m1 =
β (β−1)

2

(β −1)y2 − β−1
β

y+ β−1
4(β+1) for m1 ≤ y < m2 =

1
2

y2 − β−1
β

y+ β−1
4β (β+1) for 1

2 ≤ y < m0 =
β

2

0 for m0 ≤ y ≤ 1

So there we have it.

6.6.2 Case n=2 (order ν = 3) arbitrary power

The above computation can be repeated to arbitrary power. The interval inclusion table
gave the relations for a 3×3 block of interval relations. These were

λβ f1 (y) = f2

(
y
β

)
λβ f2 (y) = f3

(
y
β

)
λβ f3 (y) = f3

(
y
β

)
+ f1

(
y
β
+

1
2

)
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In matrix form, this block has the shape

λ

 f1 (y)
f2 (y)
f3 (y)

=
1
β

 0 1 0
0 0 1
0 0 1




f1

(
y
β

)
f2

(
y
β

)
f3

(
y
β

)
+ 1

β

 0 0 0
0 0 0
1 0 0




f1

(
y
β
+ 1

2

)
f2

(
y
β
+ 1

2

)
f3

(
y
β
+ 1

2

)


with the arguments to the fk suitably twizzled.
The next step is to expand fk (y) = ∑

∞
j=0 ak jy j in place, and collect terms. The first

two rows are easy; they are shifts:

λβ

(
∑

j
a1 jy j

)
= ∑

j

a2 j

β j y j

λβ

(
∑

j
a2 jy j

)
= ∑

j

a3 j

β j y j

The last row is more complex; it requires expansion using binomial coefficients:

λβ

(
∑

j
a3 jy j

)
= ∑

j

a3 j

β j y j +∑
j

a1 j

(
1
2
+

y
β

) j

= ∑
j

a3 j

β j y j +∑
j

a1 j

j

∑
m=0

(
j

m

)
ym 1

β m · 1
2 j−m

=
∞

∑
m=0

ym 1
β m

(
a3m +2m

∞

∑
j=m

a1 j
1
2 j

(
j

m

))
The algebraic form above is opaque; writing it out in blocks is revealing:

λ


A0
A1
A2
A3
...

=
1
β



D 1
2C 1

4C C03 · · ·
0 1

β
D 1

β
C C13 · · ·

0 0 1
β 2 D C23

0 0 0 1
β 3 D

. . .

...
...

. . .
. . .




A0
A1
A2
A3
...


with

A j =

 a1 j
a2 j
a3 j

 B=

 0 1 0
0 0 1
0 0 1

 C =

 0 0 0
0 0 0
1 0 0

 D=B+C =

 0 1 0
0 0 1
1 0 1


The off-diagonal blocks are scalar multiples C jm = c jmC with

c jm =

(
2
β

)m 1
2 j

(
j

m

)
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This gives the final desired result: the operator Lβ for this particular fixed β is that
upper-diagonal block operator. It can be truncated at any fixed j, giving a 3 j × 3 j
matrix, with eigenvalue of β− j and an eigenfunction consisting of three piece-wise
polynomial parts. Setting j = 0 returns the Gelfond–Parry invariant measure, for this
fixed β . Setting j = 2 returns the result of the previous section. Truncating at fixed j
also allows for a hunt of complex eigenvalues.

6.6.3 Case n=3 (order ν = 3)

It is not yet clear how the interval inclusions are to be interpreted. Thus, a few more
special cases are worth looking at. This is a shortened repetition of the n = 2 case.

• Polynomial: p3 (β ) = β 3 −β 2 −β −1

• Root: r3 ≈ 1.839286755214161 · · ·

• Midpoints:

m0 = β/2 ≈ 0.91964337760708
m1 = β (β −1)/2 ≈ 0.771844506346038

m2 = β
(
β

2 −β −1
)
/2 = 1/2

Thus 0 < m2 < m1 < m0 < 1.

• Intervals I3 = [0,m2]< I2 = [m2,m1]< I1 = [m1,m0]< I0 = [m0,1].

• The recursive interval maps are the “left map” L : Ik 7→ Ik
β

and the “right map”

R : Ik 7→ Ik
β
+ 1

2 .

• Interval inclusions:

ν n m j LI3 LI2 LI1 RI3 RI2 RI1

3 3 2,1,0 ⊂ I3 ⊂ I3 ⊂ I3 = I2 = I1 = I0

• The recurrence relation is λβ fk (y) = fLk

(
y
β

)
+ fRk

(
y
β
+ 1

2

)
, where Lk = j

when I j ⊆ LIk and likewise for Rk. Based on the inclusion table, this is

λβ f1 (y) = f3

(
y
β

)
λβ f2 (y) = f3

(
y
β

)
+ f1

(
y
β
+

1
2

)
λβ f3 (y) = f3

(
y
β

)
+ f2

(
y
β
+

1
2

)
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• This has the twizzled form

λ

 f1 (y)
f2 (y)
f3 (y)

=
1
β

 0 0 1
0 0 1
0 0 1




f1

(
y
β

)
f2

(
y
β

)
f3

(
y
β

)
+ 1

β

 0 0 0
1 0 0
0 1 0




f1

(
y
β
+ 1

2

)
f2

(
y
β
+ 1

2

)
f3

(
y
β
+ 1

2

)


• The blocks are

B =

 0 0 1
0 0 1
0 0 1

 C =

 0 0 0
1 0 0
0 1 0

 D = B+C =

 0 0 1
1 0 1
0 1 1


• Expanding fk (y)=∑

∞
j=0 ak jy j and gathering together monomials yields the same

block form as before:

λ


A0
A1
A2
...

=
1
β


D C01 C02 · · ·
0 1

β
D C12 · · ·

0 0 1
β 2 D

...
...

. . .




A0
A1
A2
...


with C jm = c jmC as before, with

c jm =

(
2
β

)m 1
2 j

(
j

m

)
as before, and of course

A j =

 a1 j
a2 j
a3 j


Comparing to the previous section, the generic form is now visible.

6.7 General case, redux
The above provides sufficient notation to discern the general case. From the top:

• The goal is to solve Lβ f = λ f to obtain the eigenvalue λ and eigenfunction f .
This will be done for β values that have finite orbits. These values are given by
the largest real root of the corresponding polynomial.

• Fix n, selecting a polynomial pn (β ) of order ν . Solve pn (β ) = 0 to obtain a root
rn = β .

• Iterate the midpoint m0 = β/2 to get m1 = Tβ (m0) = β (β −1)/2, ..., mk =

T k
β
(m0), ..., mν = 1/2.
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• Use the midpoints to split the interval [0,1] into ν distinct sub-intervals. Provide
a label k for each interval, so that the intervals Ik can be referred to by their labels.
It is generally easiest to sort these into ascending order, but this is not mandatory.

• Define the recursive interval maps L : Ik 7→ Ik
β

and R : Ik 7→ Ik
β
+ 1

2 .

• Starting with I0 = [m0,1], define an interval inclusion graph.

• The interval inclusion graph determines incidence matrices. These are square
matrices B,C, having matrix entries Bk j = Θ(I j ⊆ LIk) where

Θ(I j ⊆ LIk) =

{
1 if I j ⊆ LIk

0 if I j ⊈ LIk

is the inclusion membership function. Likewise Ck j = Θ(I j ⊆ RIk).

• For each interval k, define the component fk (y) = f (y)|Ik as the restriction of f
to the interval Ik.

• On each interval, the pushforward Lβ takes the form of a recurrence relation

λβ fk (y) = fLk

(
y
β

)
+ fRk

(
y
β
+ 1

2

)
, where Lk = j when I j ⊆ LIk and likewise

for Rk.

• Explicitly inserting the membership function Θ into the recurrence relation gives
the linear equation

λ fk (y) =
1
β

ν

∑
m=1

[
Θ(LIk ⊆ Im) fm

(
y
β

)
+Θ(RIk ⊆ Im) fm

(
y
β
+

1
2

)]

• This is more visually transparent when written in block form a

λ

 f1 (y)
...

fν (y)

=
1
β

B


f1

(
y
β

)
...

fν

(
y
β

)
+ 1

β
C


f1

(
y
β
+ 1

2

)
...

fν

(
y
β
+ 1

2

)


with the square matrices B,C as just defined.

• For each interval k, write fk (y)=∑ j ak jy j for unknown constants ak j to be solved
for. Thus, the eigenfunction will be piece-wise polynomial. The above forms a
linear system that is solvable.

• Insert the polynomial pieces, and gather terms into monomials y j. This requires
the use of binomial coefficients to write(

y
β
+

1
2

) j

=
j

∑
m=0

(
j

m

)
ym 1

β m · 1
2 j−m
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so that

fk

(
y
β
+

1
2

)
= ∑

j
ak j

(
1
2
+

y
β

) j

=
∞

∑
m=0

ym
(

2
β

)m ∞

∑
j=m

ak j
1
2 j

(
j

m

)

• Grouping into monomials results in the block-triangular form

λ


A0
A1
A2
...

=
1
β


D C01 C02 · · ·
0 1

β
D C12 · · ·

0 0 1
β 2 D

...
...

. . .




A0
A1
A2
...


with D = B+C and with C jm = c jmC with

c jm =

(
2
β

)m 1
2 j

(
j

m

)
and block vectors

A j =

 a1 j
...

aν j


• In other words,

Lβ =
1
β


D C01 C02 · · ·
0 1

β
D C12 · · ·

0 0 1
β 2 D

...
...

. . .


is a matrix representation of Lβ in a monomial-basis form. It is upper-triangular.
It is solvable. It can be truncated at any finite j to give a finite ν j×ν j matrix.

• For any fixed ν , the eigenfunction consists of ν pieces, each piece being a poly-
nomial of the same degree j.

• For such a truncated, finite-size matrix, the spectrum of Lβ is determined en-
tirely by the spectrum of the block D, as solvability implies that only the bottom-
right block matters. Thus, one concludes that the spectrum of Lβ is just the
spectrum of D times β− j.

• The spectral radius of D is one. In general, it will have complex eigenvalues;
these are bounded below by 1/β . Much as in the j = 0 case, these accumulate
onto the circle of radius 1/β as ν gets large.
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• Given this block-triangular structure, the consequence is that the largest real
eigenvalue of Lβ will be β− j and there will in general be additional complex
eigenvalues λ satisfying β− j−1 < |λ | < β− j. These are determined entirely by
the spectrum of D.

This is a complete description for such piece-wise polynomial solutions. The solution
decouples the behavior with respect to the monomials, which is captured in the D,C
block matrix, from the behavior with respect to the intervals, which is captured in the
individual blocks B,C. This allows limiting behavior can be explored in two distinct
ways. One is the replacement of the monomial basis by some other basis, possibly
not polynomial. Another is the ν → ∞ limit, where the number of plateaus becomes
unbounded.

The factorization into block-triangular form indicates that the spectrum of Lβ is
determined entirely by the spectrum of D, and thus it is this spectrum that should be the
subject of focus; the rest is just decorative trimmings. The only irregular or “difficult”
part to the above is the calculation of the interval inclusions, needed to obtain the left
and right incidence matrices B and C.

That’s it. That’s the complete solution for the general case.

6.8 General case, distillation
Lets distill some more. The ingredients seem to be:

• A collection of intervals Ik generated by midpoint iteration.

• A pair of interval maps L : Ik 7→ Ik
β

and R : Ik 7→ Ik
β
+ 1

2 .

• A pair of inclusion relations B = Θ(I j ⊆ LIk) and C = Θ(I j ⊆ RIk)

• A spectrum determined entirely by D = B+C.

In a certain sense, the pushforward is determined entirely by D and nothing else mat-
ters. The monomial basis is some decorative tail-wagging by the monomials, demon-
strating their prowess in introducing the binomial coefficient into combinatorial prob-
lems. But it illuminates nothing fundamental about the pushforward.

Notable properties:

• As square matrices, both B and C are singular.

• The matrix B has exactly one non-zero entry in each row.

• The matrices B and C never share a common non-zero entry. Equivalently, D =
B+C has entries that are only zero or one.

• The matrix D is unimodular, i.e. has determinant ±1, and thus a spectral radius
of 1.

• The spectrum of D is bounded below by 1/β .

Questions:
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• What other bases, besides the monomial basis, are there, that could be interesting
to look at?

The coherent state is in the section after next.

6.9 Bounds estimates
The j → ∞ limit is interesting. It presents the opportunity to describe piece-wise ana-
lytic eigenfunctions, although, based in the spectrum, these would all presumably live
in the kernel.

This last statement should be qualified. The limiting behavior of of L is given
by the diagonal sequence β− jD and since L is block-diagonal and solvable, it would
seem that the eigenvalues are given by the spectrum of D times β− j. If the spectrum
of D is bounded; indeed, if the spectral radius is one, then the j → ∞ limit implies
that the high- j solutions approach the kernel. If, however, it could be arranged that
the spectrum of D becomes unbounded, then the conclusion about the kernel no longer
holds.

The off-diagonal blocks have coefficients

c jm =

(
2
β

)m 1
2 j

(
j

m

)
The first few rows are

c0 j =
1
2 j

c1 j =
j

β2 j−1

c2 j =
j ( j−1)
β 22 j+1

and subsequent rows introduce ever-greater falling factorials. In the j → ∞ limit, these
behave tamely.

For fixed m or even m = o(
√

j), the binomial coefficient is estimated as[42](
j

m

)
=

jm

m!

(
1+o

(
m2

j

))
and so

c jm =

(
2
β

)m 1
2 j

(
j

m

)
=

1
m!

(
2
β

)m jm

2 j

(
1+o

(
m2

j

))
and so the j → ∞ limit is dominated by the jm2− j term, which grows for a bit before
being stomped out. Similar behavior is seen near the diagonal, where it is handy to
write m = j−n for small enough n, so that n = o(

√
j). Then

c j, j−n =

(
2
β

) j−n 1
2 j

(
j
n

)
=

1
n!

(
β

2

)n jn

β j

(
1+o

(
n2

j

))
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and so this is suppressed by a jnβ− j term.
The worst-case behavior is at the “middle coefficient”, where j = 2m and the bino-

mial coefficients are maximal. The asymptotics are(
2m
m

)
=

22m
√

πm
(1+o(1))

Thus, along the half-diagonal, the matrix terms blow up:

c2m,m =

(
2
β

)m 1√
πm

(1+o(1))

since 1< 2/β . This really is the worst-case location. Close to this half-diagonal, taking
j → ∞ and writing m = p j for 0 ≪ p ≪ 1, the binomial coefficient converges to the
normal distribution, so that

log2

(
j

p j

)
= jH (p)(1+o(1))

with −H (p) = p log2 p+(1− p) log2 (1− p) the binary entropy function. This gives

c j,p j =

(
2
β

)p j 2H(p)
√

π p j
(1+o(1))

as the estimate for the blowup at the near-half-diagonal.

6.10 Coherent States
Coherent functions can be used to construct the continuous spectrum solving Lβ ψ =
λψ for any complex |λ |< 1. These are exhibited in this section.

Given any function g, write the sawtooth s(x) = g(x mod β/2) so as to be explic-
itly periodic. Then define the coherent sawtooth as

ψw,α (x) =
∞

∑
n=0

wns
(

αT n
β
(x)
)

By convention, g ∈ kerLβ so as to exclude linear combinations of existing, known
eigenfunctions constructed previously. However, this restriction does not seem to be
explicitly needed. The α is a scaling constant; the intent is to use it as an aid to stitch
pieces together. Note that for α = 1, the modulo in the sawtooth is not needed. For
α = β , together with the mod, it is as if one more shift is introduced. There is also
another variant to explore: s(x) = g(x mod γ) for some other value of γ .

We will need expressions for ψw,α (y/β ) and for ψw,α (y/β +1/2), so get them
now. The shift Tβ was defined in eqn 4 as

Tβ (x) =

{
βx for 0 ≤ x < 1

2
β
(
x− 1

2

)
for 1

2 ≤ x ≤ 1
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thus,

Tβ

(
y
β

)
= yΘ(m0 − y)+(y−m0)Θ(y−m0)

The second term is ignorable, as it will always be the case that y < m0 and so this
simplifies to

Tβ

(
y
β

)
= y

Similarly

Tβ

(
y
β
+

1
2

)
= y

Plugging through gives

ψ

(
y
β

)
= s
(

α

β
y
)
+w

∞

∑
n=0

wns
(

αT n
β
(y)
)

= s
(

α

β
y
)
+wψ (y)

The above holds for all 0 ≤ y ≤ β/2. Similarly

ψ

(
y
β
+

1
2

)
= s
(

α

β
y+

α

2

)
+wψ (y)

The above holds for all 0 ≤ y ≤ 1/2.
This is the point of coherent states: they scale when they shift.

6.10.1 Case n=1 (order ν = 2)

For the n = 1 case, p1 (β ) = β 2 − β − 1 has a root β = r1 = ϕ . The midpoints are
m0 = β/2 and m1 = 1/2 so 0 < m1 < m0 < 1 and I2 = [0,1/2] and I1 = [1/2,m0]. The
interval inclusion map is given by

Θ(I j ⊆ LIk) =

[
0 1
0 1

]
and Θ(I j ⊆ RIk) =

[
0 0
1 0

]
The interval relationships that need to be solved are

λβ f1 (y) = f2

(
y
β

)
λβ f2 (y) = f2

(
y
β

)
+ f1

(
y
β
+

1
2

)
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Assume that fk (y) = akψw,αk (y) for unknown scale factors ak and αk. Simplify the
notation, and write ψk = ψw,αk . Then the goal is to solve

λβa1ψ1 (y) = a2ψ2

(
y
β

)
λβa2ψ2 (y) = a2ψ2

(
y
β

)
+a1ψ1

(
y
β
+

1
2

)
Use the shift to pull out a sawtooth factor:

λβa1ψ1 (y) = a2s
(

α2

β
y
)
+wa2ψ2 (y)

λβa2ψ2 (y) = a2s
(

α2

β
y
)
+a1s

(
α1

β
y+

α1

2

)
+wa2ψ2 (y)+wa1ψ1 (y)

then plug in for ψ1 (Gaussian elimination step):

λβa2ψ2 (y)= a2s
(

α2

β
y
)
+a1s

(
α1

β
y+

α1

2

)
+wa2ψ2 (y)+

w
λβ

a2s
(

α2

β
y
)
+

w2

λβ
a2ψ2 (y)

Collecting terms,

0 = a2s
(

α2

β
y
)
+a1s

(
α1

β
y+

α1

2

)
+

w
λβ

a2s
(

α2

β
y
)

λβ = w+
w2

λβ

The second eqn has the solution λ = w, which is great, its exactly what is seen for the
Bernoulli shift; its what we expected.

The first eqn reduces to

0 = a2β s
(

α2

β
y
)
+a1s

(
α1

β
y+

α1

2

)
The task is to find parameter combinations to solve this. This is not so easy; some
variants fail to give valid overall solutions.

Failing variant This subsection documents a failed solution. The failure mode is
subtle; we record it here as a lesson.

Recall the sawtooth was defined as s(x) = g(x mod β/2). The modulo will kill the
additive term, if (α1/2) mod β/2 = 0 which is achieved by α1 = kβ for any integer
k. This leads the conclusion that α2 = α1 = kβ and that a1/a2 = −β , and this seems
like it should be a solution, since the algebra worked out.

This is incorrect. Numeric checks reveal that, for α2 = α1

λβa1ψ1 (y) ̸= a2ψ2

(
y
β

)
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It won’t work. Let’s look more closely. After reduction, one gets

λβa1ψ1 (y) = a2s
(

α2

β
y
)
+wa2ψ2 (y)

The question is: are there any possible values of α1 and α2 that could allow this to
hold, as an equality, never mind the other assorted scaling factors? Well, try it. We
would need to solve

ψ1 (y)− cψ2 (y) =
∞

∑
n=0

wn
[
s
(

α1T n
β
(x)
)
− cs

(
α2T n

β
(x)
)]

= ds(ey)

for some constants α1,α2,c,d,e. This has the trivial solution c = 1,α1 = α2,d = 0
which implies a1 = a2 = 0 and so that won’t do.

This is solvable by setting α1 = 1 and α2 = β , which allows a factor of s to be
pulled out of the sum: s

(
βT n

β
(x)
)
= s
(

T n+1
β

(x)
)

and then it does all go through.
Rather than trying to rescue the above, a fresh start is made, below.

Working variant Armed with the failure mode above, we look for solutions to the
equation

λβa1ψ1 (y) = a2ψ2

(
y
β

)
with α2 ̸= α1. One way this can be satisfied is by setting α1 = 1 and α2 = β . This
has the effect of introducing one more shift into ψ2, so that ψ2 (y) = ψ1

(
Tβ (y)

)
. This

allows the terms in the coherent series to be lined up. First, lets double-check this
above claim.

ψ2 (y) =
∞

∑
n=0

wng
((

α2T n
β
(y)
)

mod
β

2

)
=

∞

∑
n=0

wng
(

Tβ

(
T n

β
(y)
))

=
∞

∑
n=0

wng
(

T n+1
β

(y)
)

=
∞

∑
n=0

wng
((

α1T n+1
β

(y)
)

mod
β

2

)
= ψ1

(
Tβ (y)

)
So that works out, as claimed. Lets proceed. Place this back into normal form:

ψ1
(
Tβ (y)

)
=

∞

∑
n=0

wns
(

T n+1
β

(y)
)

=
1
w
[−s(y)+ψ1 (y)]
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The next equation to solve is

λβa2ψ2 (y) = a2ψ2

(
y
β

)
+a1ψ1

(
y
β
+

1
2

)
Plugging through the various forms gives

λβa2ψ1
(
Tβ (y)

)
= λβa1ψ1 (y)+a1ψ1

(
y
β
+

1
2

)
λβa2

w
(−s(y)+ψ1 (y)) = λβa1ψ1 (y)+a1s

(
y
β
+

1
2

)
+wa1ψ1 (y)

Collecting terms requires
λβa2

w
= λβa1 +wa1

The above can be satisfied by setting λ = w and a2 = wβa1. This leaves the sawtooth
term. It is

−λβa2

w
s(y) = a1s

(
y
β
+

1
2

)
−wβ

2s(y) = s
(

y
β
+

1
2

)
The definition was s(x) = g(x mod β/2) and since y ≤ β/2 is guaranteed a priori
we can drop the modulo term and hunt for a g(x) that satisfies this. Such g(x) can be
found. When they are found, the resulting eigenfunction will have the form

f (y) =


f2 (y) = a2ψw,β (y) for 0 ≤ y ≤ 1

2

f1 (y) = a1ψw,1 (y) for 1
2 < y ≤ β

2

f0 (y) = 0 for β

2 < y ≤ 1

with ψ as defined earlier, and with λ = w and a2 = wβa1 in all cases.

Polynomial generators Lets try the first few cases by hand. The first is g(x) = 1.
This forces w =−1/β 2.

Continuing. In the linear domain, assume g(x) = x+b so that

0 = wβ
2 (y+b)+

y
β
+

1
2
+b

The linear term forces w = −1/β 3 and b = −1/2
(
1+wβ 2

)
. For β = ϕ this reduces

to b =−(1+ϕ)/2
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The quadratic form g(x) = x2 +bx+ c gives

0 = wβ
2 (y2 +by+ c

)
+

(
y
β
+

1
2

)2

+b
(

y
β
+

1
2

)
+ c

0 = wβ
2 +

1
β 2

0 = b
(

wβ
2 +

1
β

)
+

1
β

0 = c
(
wβ

2 +1
)
+

1
4
+

b
2

For β = ϕ , these reduce to

w =− 1
ϕ4 = 5−3ϕ

b =−(ϕ +1)

c =
3ϕ +2

4
It appears that this pattern can be followed, thus obtaining an eigenfunction with eigen-
value λ = w =−1/β k+2 for polynomial generators g(x) of degree k.

Arbitrary generators The general case requires solutions to

−wβ
2g(y) = g

(
y
β
+

1
2

)
that hold for all 0 ≤ y ≤ β/2. But this is easy. The map takes [0,1/2] to [1/2,β/2],
which are non-overlapping. Thus, it is sufficient to set

g(y) =

{
h(y) for 0 ≤ y ≤ 1

2

−wβ 2h
(
β
(
y− 1

2

))
for 1

2 < y ≤ β

2

for any h whatsoever, and any complex w with |w| < 1. This will give a valid eigen-
function with eigenvalue λ = w. So, for β = ϕ the golden mean, this provides the
general solution.

6.10.2 Case n=2 (order ν = 3)

As before, now that we know which direction to move in. The interval inclusion table
gave the relations for a 3×3 block of interval relations. These were

λβ f1 (y) = f2

(
y
β

)
λβ f2 (y) = f3

(
y
β

)
λβ f3 (y) = f3

(
y
β

)
+ f1

(
y
β
+

1
2

)
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The above are not solvable with the old assumption that fk (y) = akψw,αk (y) for
unknown scale factors ak and αk. To repeat the earlier solution process would require
α1 = 1,α2 = β which is OK, but then α3 = β leads to the “failed derivation” (because
α2 = α3 gives the same failure mode) while the “natural” choice α3 = β 2 gives a term
with a buried β that cannot be commuted out. The new trick, below, is to insert T
instead of α .

Try this: f1 (y) = ψw,α (y) ≡ ψ1 (y) and then ψ2 (y) = ψ1
(
Tβ (y)

)
and ψ3 (y) =

ψ2
(
Tβ (y)

)
. The goal is to solve

λβa1ψ1 (y) = a2ψ2

(
y
β

)
λβa2ψ2 (y) = a3ψ3

(
y
β

)
λβa3ψ3 (y) = a3ψ3

(
y
β

)
+a1ψ1

(
y
β
+

1
2

)
Using Tβ (y/β ) = y causes dramatic simplification in the first two rows:

λβa1 = a2

λβa2 = a3

λβa3ψ3 (y) = a3ψ2 (y)+a1ψ

(
y
β
+

1
2

)
For the last row, use

ψ2 (y) = ψ
(
Tβ (y)

)
=

1
w
[−s(y)+ψ (y)]

ψ3 (y) = ψ

(
T 2

β
(y)
)
=

1
w

[
−s
(
Tβ (y)

)
+

1
w
[−s(y)+ψ (y)]

]
ψ

(
y
β
+

1
2

)
= s
(

y
β
+

1
2

)
+wψ (y)

Plugging through gives

λβa3

[
1

w2 ψ (y)− 1
w

s
(
Tβ (y)

)
− 1

w2 s(y)
]
=

a3

w
[ψ (y)− s(y)]+a1s

(
y
β
+

1
2

)
+a1wψ (y)

Collecting the coefficients of ψ gives

λβ

w2 a3 =
1
w

a3 +a1w

λβ

w3 a3 =
1

w2 a3 +a1

Trying to slot in the identity β 3 = β 2 +1 into the above gives a solution a3/w2 = β 2a1
and λ = w. The sawtooth term is
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λβa3

[
1
w

s
(
Tβ (y)

)
+

1
w2 s(y)

]
=

a3

w
s(y)−a1s

(
y
β
+

1
2

)
λβ

3 [ws
(
Tβ (y)

)
+ s(y)

]
= β

2ws(y)− s
(

y
β
+

1
2

)
The right-most term has the implicit assumption that y≤ 1/2 and in this range, Tβ (y) =
βy and so

w2
β

3s(βy)+ws(y)+ s
(

y
β
+

1
2

)
= 0

where β 2 (β −1) = 1 is used to simplify.
To summarize, the midpoints iterated out to 0 < m1 < m2 < m0 < 1. The eigenfunc

is then

f (y) =


f3 (y) = w2β 2ψw

(
T 2

β
(y)
)

for 0 ≤ y ≤ m1

f2 (y) = wβψw
(
Tβ (y)

)
for m1 < y ≤ 1

2
f1 (y) = ψw (y) for 1

2 < y ≤ m0

f0 (y) = 0 for m0 < y ≤ 1

This has not yet been double-checked numerically.

Polynomial generators Look for solutions with s(x) = g(x mod β/2).
For g(x) = 1 this gives

w2
β

3 +w+1 = 0

Yikes! This has no real solutions; it does have a pair of complex solutions w =(
−1±

√
1−4β 3

)
/2β 3.

For the general analytic case, g(x) = xk +∑
k−1
j=0 c jx j and the leading term requires

w2
β

k+3 +β
2w(β −1)+β

−k = 0

w2
β

2k+3 +wβ
k+2 (β −1)+1 = 0

w2
β

2k+3 +wβ
k +1 = 0

which is still quadratic in w and so again has a pair of complex solutions. This has not
yet been double-checked numerically.

Fractal generators Analogous to the n = 1 case, we look for solutions to

w2
β

3s(βy)+ws(y)+ s
(

y
β
+

1
2

)
= 0

Since s(x) = g(x mod β/2), the search can be limited to 0 ≤ y ≤ β/2. Just as be-
fore, the third term maps [0,1/2] to [1/2,β/2] and thus can be used to cancel out any
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behavior. Thus, it is sufficient to set

g(y) =

{
h(y) for 0 ≤ y ≤ 1

2

−wh
(
β
(
y− 1

2

))
−w2β 3h

(
β 2
(
y− 1

2

))
for 1

2 < y ≤ β

2

for any h whatsoever, and any complex w with |w| < 1. This will give a valid eigen-
function with eigenvalue λ = w. Again, this provides the general solution.

6.10.3 Case n=3 (order ν = 3)

This case exhibits several novel features, so lets look at it directly. Write the twizzled
form as

βλ

 f1 (y)
f2 (y)
f3 (y)

= B


f1

(
y
β

)
f2

(
y
β

)
f3

(
y
β

)
+C


f1

(
y
β
+ 1

2

)
f2

(
y
β
+ 1

2

)
f3

(
y
β
+ 1

2

)


with

B =

 0 0 1
0 0 1
0 0 1

 C =

 0 0 0
1 0 0
0 1 0

 D = B+C =

 0 0 1
1 0 1
0 1 1

 for n = 3

In non-matrix form, the relations are

λβ f1 (y) = f3

(
y
β

)
λβ f2 (y) = f3

(
y
β

)
+ f1

(
y
β
+

1
2

)
λβ f3 (y) = f3

(
y
β

)
+ f2

(
y
β
+

1
2

)
Write ψk (y) = ψ

(
T k−1

β
(y)
)

. The direct assignment of fk to ψk doesn’t provide a
solution of the form seen in the previous n = 1 and n = 2 cases. (Try it! You’ll get a
form that is satisfied only if everything is zero.) But it seems that a permutation should
work. Assume that there exists a permutation matrix R such that the association of fk
to ψk is passes through that permutation. Assume the form f1 (y)

f2 (y)
f3 (y)

= R

 a1ψ1 (y)
a2ψ2 (y)
a3ψ3 (y)


where RT is the transpose, RRT = I and so

βλ

 a1ψ1 (y)
a2ψ2 (y)
a3ψ3 (y)

= RT BR


a1ψ1

(
y
β

)
a2ψ2

(
y
β

)
a3ψ3

(
y
β

)
+RTCR


a1ψ1

(
y
β
+ 1

2

)
a2ψ2

(
y
β
+ 1

2

)
a3ψ3

(
y
β
+ 1

2

)

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Then apply the shift, for k > 0,

ψ

(
T k

β

(
y
β

))
= ψ

(
T k

β

(
y
β
+

1
2

))
= ψ

(
T k−1

β
(y)
)

while for k = 0

ψ

(
y
β

)
= s
(

y
β

)
+wψ (y)

ψ

(
y
β
+

1
2

)
= s
(

y
β
+

1
2

)
+wψ (y)

to get

βλ

 a1ψ1 (y)
a2ψ2 (y)
a3ψ3 (y)

= RT BR

 a1ψ1

(
y
β

)
a2ψ1 (y)
a3ψ2 (y)

+RTCR

 a1ψ1

(
y
β
+ 1

2

)
a2ψ1 (y)
a3ψ2 (y)


What is left can be reduced by plugging in the general form:

ψ

(
T k

β
(y)
)
=

∞

∑
n=0

wns
(

T n+k
β

(x)
)

=
1

wk

[
ψ (y)−

k−1

∑
n=0

wns
(

T n
β
(x)
)]

The result requires collecting similar terms. The ψ terms give

βλ

 a1
a2w−1

a3w−2

= wRT DR

 a1
a2w−1

a3w−2


where D = B+C. This is an eigenvalue equation, and since pn (β ) = det [D−β I] = 0
conclude that λ = w. Lets take a moment to solve this. It has the form

0 = [D−β I]R

 a1
a2w−1

a3w−2

 or 0 =

 −β 0 1
1 −β 1
0 1 1−β

 e1
e2
e3


or

e3 = βe1 and e2 = β (β −1)e1

The generating terms (the s terms) give

−β

 0
a2s(y)

a3w−1S1 (y)

=−RT DR

 0
0

a3w−1s(y)

+RT BR

 a1s
(

y
β

)
0
0

+RTCR

 a1s
(

y
β
+ 1

2

)
0
0


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where S1 (y) = s(y)+ws
(
Tβ (y)

)
.

The desired form requires a permutation matrix R that keeps the s
(

y
β
+ 1

2

)
term

alive, so that it can be used, just as in the previous n = 1 and n = 2 cases, to get an
equation of the form

s
(

y
β
+

1
2

)
= ∑

k
cks
(

β
ky
)

Since s(x) = g(x mod β/2), the search can be limited to 0 ≤ y ≤ β/2. As before,
the left-hand side maps [0,1/2] to [1/2,β/2] and thus can be used to cancel out any
behavior on the right-hand side. The general form of the generator is then

g(y) =

{
h(y) for 0 ≤ y ≤ 1

2

−∑k ckh
(
β k+1

(
y− 1

2

))
for 1

2 < y ≤ β

2

for any h whatsoever, and any complex w with |w| < 1, to obtain the general coherent
state eigenfunction. This provides a complete solution, if an appropriate rotation matrix
R can be found.

Failed guess As we are lazy, we can get to guessing. One obvious guess is that
R = PT with P the shift permutation matrix discovered earlier. It turns out this won’t
work. This subsection documents this failed attempt. Perhaps reasons for the failure
become clear, and thus the path to the fix. So, for n = 3, the permutation is gotten from
the earlier table, as

P =

 · · 1
1 · ·
· 1 ·

 and PT =

 · 1 ·
· · 1
1 · ·


Then

PBPT =

 · · 1
1 · ·
· 1 ·

 0 0 1
0 0 1
0 0 1

 · 1 ·
· · 1
1 · ·

=

 1 0 0
1 0 0
1 0 0


and

PCPT =

 · · 1
1 · ·
· 1 ·

 0 0 0
1 0 0
0 1 0

 · 1 ·
· · 1
1 · ·

=

 · · 1
1 · ·
· 1 ·

 0 0 0
0 1 0
0 0 1

=

 0 0 1
0 0 0
0 1 0


The initial shift form does not work out:

−β

 0
a2s(y)

a3w−1S1 (y)

=−

 1 0 1
1 0 0
1 1 0

 0
0

a3w−1s(y)

+
 1 0 0

1 0 0
1 0 0


 a1s

(
y
β

)
0
0

+
 0 0 1

0 0 0
0 1 0


 a1s

(
y
β
+ 1

2

)
0
0


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Very disappointing that the s
(

y
β
+ 1

2

)
term is killed; this was vital for the construction

of the coherent states. The loss of this term is fatal for the general theory, and so it
seems the guess that R = PT is incorrect. Lets look at the train-wreck. Multiplying out
gives

β

 0
a2s(y)

a3w−1S1 (y)

=

 a3w−1s(y)
0
0

−


a1s
(

y
β

)
a1s
(

y
β

)
a1s
(

y
β

)


This looks dubious; perhaps there is a way to solve this, but certainly the simple form
discovered earlier doesn’t work.

Required form The goal is to find a rotation matrix R such that

βR

 0
a2s(y)

a3w−1S1 (y)

=DR

 0
0

a3w−1s(y)

−BR

 a1s
(

y
β

)
0
0

−CR

 a1s
(

y
β
+ 1

2

)
0
0


falls into the form for which one row has the structure

∑
k

cks
(

β
ky
)
+ s
(

y
β
+

1
2

)
= 0

and the other rows do not prevent a solution (typically, by forcing a1 = 0). Perhaps the
collapsed form is easier to think about?

βR

 0
a2s(y)

a3w−1S1 (y)

= BR

 −a1s
(

y
β

)
0

a3w−1s(y)

+CR

 −a1s
(

y
β
+ 1

2

)
0

a3w−1s(y)


Try a brute-force approach.

CR =

 0 0 0
1 0 0
0 1 0

 r11 r12 r13
r21 r22 r23
r31 r32 r33

=

 0 0 0
r11 r12 r13
r21 r22 r23


BR =

 0 0 1
0 0 1
0 0 1

 r11 r12 r13
r21 r22 r23
r31 r32 r33

=

 r31 r32 r33
r31 r32 r33
r31 r32 r33


Curious. CR shifts down by one row, discarding it. But BR takes that discarded row,
and reproduces it. The top row is

β r12a2s(y)+β r13a3w−1S1 (y) =−r31a1s
(

y
β

)
+ r33a3w−1s(y)
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But S1 (y)= s(y)+ws
(
Tβ (y)

)
and when y< 1/2 the shift reduces to s

(
Tβ (y)

)
= s(βy)

Plugging through gives the mess

βwr12a2s(y)+β r13a3 (s(y)+ws(βy)) =−r31a1ws
(

y
β

)
+ r33a3s(y)

(βwr12a2 +β r13a3 − r33a3)s(y) =−β r13a3ws(βy)− r31a1ws
(

y
β

)
This is not solvable for general s(y) unless r13 = r31 = 0 and 0 = βwr12a2 − r33a3.

That leaves

R =

 r11 r12 0
r21 r22 r23
0 r32 r33


Next, verifying that RT R = I imposes additional constraints. Explicitly verifying,

RT R = I =

 r11 r21 0
r12 r22 r32
0 r23 r33

 r11 r12 0
r21 r22 r23
0 r32 r33


=

 r2
11 + r2

21 r11r12 + r21r22 r23r21
r11r12 + r21r22 r2

12 + r2
22 + r2

32 r22r23 + r32r33
r21r23 r22r23 + r32r33 r2

23 + r2
33


Satisfying this requires either r21 = 0 or r23 = 0. But the former choice forces r12 = 0
which breaks the earlier relation. So take r23 = 0 to get

R =

 r11 r12 0
r21 r22 0
0 0 1


That leaves behind

BR =

 0 0 1
0 0 1
0 0 1

 and CR =

 0 0 0
r11 r12 0
r21 r22 0


Finally,

β

 r11 r12 0
r21 r22 0
0 0 1

 0
a2s(y)

a3w−1S1 (y)

=

 0 0 1
0 0 1
0 0 1


 −a1s

(
y
β

)
0

a3w−1s(y)

+
 0 0 0

r11 r12 0
r21 r22 0


 −a1s

(
y
β
+ 1

2

)
0

a3w−1s(y)


The top row was already taken care of. Avoid the busywork by killing it, and then
killing everything that multiplies to zero. This leaves

β

[
r22 0
0 1

][
a2s(y)

a3w−1S1 (y)

]
=

[
1
1

][
a3w−1s(y)

]
−
[

r11
r21

][
a1s
(

y
β
+ 1

2

) ]
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Multiplying out,

β

[
r22a2s(y)

a3w−1S1 (y)

]
=

[
a3w−1s(y)
a3w−1s(y)

]
−

 r11a1s
(

y
β
+ 1

2

)
r21a1s

(
y
β
+ 1

2

) 
It would appear that there is a common solution only if the upper and lower row are
multiples of one-another. This requires

r21 (wβ r22a2s(y)−a3s(y)) = r11a3 (βS1 (y)− s(y))

The earlier constraint gave a3 = βwr12a2, so

r21 (r22 − r12)s(y) = r11r12 (βS1 (y)− s(y))

The sticky wicket is that S1 (y) = s(y)+ws
(
Tβ (y)

)
which forces

r21 (r22 − r12)s(y) = r11r12
(
s(y)(β −1)+ws

(
Tβ (y)

))
or

[r21 (r22 − r12)− r11r12 (β −1)]s(y) = r11r12ws
(
Tβ (y)

)
which is unsolvable for general s unless r12 = r21 = 0 and r11 = r22 = 1. However, this
snowballs in all the wrong ways, forcing a3 = 0. The eigenvalue equation then implies
that a1 = a2 = 0 so we conclude that this is unsolvable, unless we accept a self-similar
s that solves

Ks(y) = s(βy)

for some constant K. This has no general form, but setting s(y) = yp forces K = β p

and so

r11r12wβ
p = r21 (r22 − r12)− r11r12 (β −1)

r11r12 (wβ
p +β −1) = r21 (r22 − r12)

Is this solvable? Well, r11 = r22 = cosθ and r12 =−r21 = sinθ so

wβ
p +β =

r12

r11
= tanθ

which is solvable for any p and w. Fixing w, this gives a one-parameter set of so-
lutions, with p being any complex number. We’ll have to take what we can get. A
one-parameter family is still plenty enough from which to construct a (complete?) or-
thonormal basis for any fixed w.

Final form So lets work our way back home, now. The general form was

β r22a2s(y) = a3w−1s(y)− r11a1s
(

y
β
+

1
2

)
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and a3 = βwr12a2 so

βa2 (r12 − r22)s(y) = r11a1s
(

y
β
+

1
2

)
This is solvable, as the non-overlapping domains allow

g(y) =

{
h(y) for 0 ≤ y ≤ 1

2
βa2(r12−r22)

r11a1
h
(
β
(
y− 1

2

))
for 1

2 < y ≤ β

2

The constraint equation forced h(y) = yp for any complex p and so the above becomes

g(y) =

{
yp for 0 ≤ y ≤ 1

2
a2
a1

β (wβ p +β −1)h
(
β
(
y− 1

2

))
for 1

2 < y ≤ β

2

The ratio a2/a1 was fixed by the eigenvalue equation cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 w2

wa2/a1
a3/a1

=

 1
β (β −1)

β


Taking the upper row,

a2

a1
=

1−w2 cosθ

wsinθ

=
1

w tanθ

(
1

cosθ
−w2

)
=

1
w tanθ

(√
1+ tan2 θ −w2

)
=

1
w(wβ p +β )

(√
1+(wβ p +β )2 −w2

)
Blech–yuck. No simplification. Oh well.

In conclusion, there is a one-parameter family of solutions to Lβ f = w f , for any
complex |w|< 1. These all have the form

f (y) =


f3 (y) for 0 ≤ y ≤ 1

2
f2 (y) for 1

2 < y ≤ m1

f1 (y) for m1 < y ≤ m0

where  f1 (y)
f2 (y)
f3 (y)

=

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 a1ψ1 (y)
a2ψ2 (y)
a3ψ3 (y)


and ψk (y) = ψ

(
T k−1

β
(y)
)

and

ψ (y) =
∞

∑
n=0

wns
(

T n
β
(y)
)
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and s(x) = g(x mod β/2) with g(x) as given above. This is a one-parameter family
of solutions, valid for any complex p. By imposing orthonormality constraints, this
should be enough to obtain a countable basis.

To conclude: a solution is found, but the road to obtain it was twisty and narrow.

6.10.4 General case

The general case, for any order ν , can be sketched as below. The twizzled form is

βλ

 f1 (y)
...

fν (y)

= B


f1

(
y
β

)
...

fν

(
y
β

)
+C


f1

(
y
β
+ 1

2

)
...

fν

(
y
β
+ 1

2

)


Following the structure of the n = 3 case, assume that there is a rotation matrix R such
that  f1 (y)

...
fν (y)

= R

 ψ1 (y)
...

ψν (y)


In index notation, this is fk (y) = Rk ja jψ j (y) with ψk (y) = ψ

(
T k−1

β
(y)
)

. Several
identities will be needed. One is

ψ

(
T k

β
(y)
)
=

∞

∑
n=0

wns
(

T n+k
β

(y)
)

=
1

wk

[
ψ (y)−

k−1

∑
n=0

wns
(

T n
β
(y)
)]

Also, for k > 0,

ψ

(
T k

β

(
y
β

))
= ψ

(
T k

β

(
y
β
+

1
2

))
= ψ

(
T k−1

β
(y)
)

while for k = 0

ψ

(
y
β

)
= s
(

y
β

)
+wψ (y)

ψ

(
y
β
+

1
2

)
= s
(

y
β
+

1
2

)
+wψ (y)

Plugging through, this gives

βλR

 a1ψ1 (y)
...

aν ψν (y)

= BR


a1ψ1

(
y
β

)
a2ψ1 (y)

...
aν ψν−1 (y)

+CR


a1ψ1

(
y
β
+ 1

2

)
a2ψ1 (y)

...
aν ψν−1 (y)


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Setting D = B+C (as before) and continuing,

βλR

 a1ψ1 (y)
...

aν ψν (y)

=DR


a1wψ1 (y)
a2ψ1 (y)

...
aν ψν−1 (y)

+BR


a1s
(

y
β

)
0
...
0

+CR


a1s
(

y
β
+ 1

2

)
0
...
0


Shorten the notation for the recurrence relation:

ψk+1 (y) = ψ

(
T k

β
(y)
)
=

1
wk

[
ψ (y)−

k−1

∑
n=0

wns
(

T n
β
(x)
)]

=
1

wk [ψ (y)−Sk−1 (y)]

and then plug through and collect distinct terms. The ψ terms give

βλR


a1

a2w−1

...
aν w1−ν

= wDR


a1

a2w−1

...
aν w1−ν


which has the form of an eigenvalue equation. The solution is given by

det [wD−βλ I] = 0

and since det [D−β I] = 0 conclude that λ = w. Note that this is independent of the
matrix R.

The generating terms, those having only s in them, give

βR


0

a2S0 (y)
...

aν w2−ν Sν−2 (y)

=DR


0
0

a3w−1S0 (y)
...

aν w2−ν Sν−3 (y)

−BR


a1s
(

y
β

)
0
...
0

−CR


a1s
(

y
β
+ 1

2

)
0
...
0


The goal is to find a rotation matrix that allows the above to be solved. The rotation
matrix has ν (ν −1)/2 free parameters, whereas the above provides only ν constraints.
This would appear to allow for a fair amount of freedom.

An additional constraint is that the desired form requires a rotation R that keeps the
s
(

y
β
+ 1

2

)
term alive, so that it can be used, just as in the previous n = 1 and n = 2

cases, to get an equation of the form

s
(

y
β
+

1
2

)
= ∑

k
cks
(

β
ky
)
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for some constants ck. Since s(x) = g(x mod β/2), the search is limited to 0 ≤ y ≤
β/2. The left-hand side maps [0,1/2] to [1/2,β/2] and thus can be used to cancel out
any behavior at all, including the right-hand side. Thus, it is sufficient to set

g(y) =

{
h(y) for 0 ≤ y ≤ 1

2

−∑k ckh
(
β k+1

(
y− 1

2

))
for 1

2 < y ≤ β

2

This works for any h whatsoever, unless h is constrained in some way, as it was for the
n = 3 solution. It is not clear if the general form will be similarly constrained or not.
Still, a one-parameter family of solutions were obtained (for fixed w), which is plenty
enough to develop a countable orthonormal basis (for fixed w).

Presuming such a rotation matrix R can be found, this gives a family of solutions
to Lβ f = w f for any complex w with |w|< 1.

Commentary This wraps up the general case. The n = 1 and n = 2 cases were rela-
tively straight-forward; the n = 3 case caused much grief, but was eventually solvable.
It seems clear that all three cases will provide a complete set of orthonormal solutions
to Lβ f = w f for any complex w with |w|< 1. Explicit formulas for this set remain out
of reach with the given toolset. Clearly, the n= 1 and n= 2 cases could be brute-forced,
if desired.

It is not hard to hypothesize that the required form of R always exists. The initial
hypothesis that R was the identity, and that R was a permutation matrix, were both
broken by the n = 3 case. In general, R could be taken to be unitary, instead of orthog-
onal, but nothing in the n = 3 case even whispered that this extra freedom was needed.
Complex conjugates never appear.

The coherent states provide a general solution. Presumably, this aligns with the
piece-wise polynomial solutions, given earlier. This requires a review of what happens
at w = β−k.

The coherent state construction is performed for the countable set of finite orbits,
enumerated by pn (β ) = 0. These give a collection of β that are dense in the interval
1 ≤ β ≤ 2. Can the construction be extended to all β? Doing so would require some
way of obtaining the interval inclusion map that the B and C matrices encode. This
inclusion map is implicit in the sofic shift, but none of the above constructions work at
an abstraction level that was appropriate for exposing it. There’s some Borel algebra
here, but the above calculations were not sufficient to make it explicit.

There are unexplored tools. For example, most real numbers x have an uncountable
number of distinct β -expansions for most values of β . This is the opposite of the so-
called “univoke” expansions. Nowhere in the above constructions was this fact made
use of, or touched upon. Yet it is implicitly there: the coherent state is iterating with
T k

β
(x) but it was never questioned or debated that this may result in different iterates,

and thus different coherent states. This is bad: it was implicitly assumed that the
coherent state is unique and well-defined, whereas perhaps each coherent state should
be taken to be an uncountable family of such states. Whether they all come together in
the end, or remain distinct, is entirely unclear.

Clearly, we’ve pried the lid off of a jar, and peered inside. It seems to hold a bot-
tomless collection of tasks, each engendering new and ever-more-complex hypothesis.
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Of course, this is the way of mathematics, and one must be careful how one spends
one’s time on Earth. Still, it is all a bit unnerving.

6.11 Algorithms
The meta problem is one of term rewriting: the recursive equations are all solvable, but
their general form is opaque and unenlightened. We want an algorithmic description of
the solution to the recurrence relations that is somehow transparent. There seem to be
multiple interacting algorithms:

• The use of multiplication and modulo to compute midpoints. When midpoints
are expressed as base-two bit-sequences, the algorithm for multiplication is quite
complex, but since we’re indoctrinated into thinking that multiplication is simple,
this is overlooked.

• After the midpoints are computed, they are placed into sorted order. This requires
a sort algorithm.

• Interval inclusion relations are required. These can be algorithmically deter-
mined. The algorithm itself is not complicated, but the generated inclusion se-
quences are opaque and cryptic.

• The interval inclusion relations induce a linear matrix form relating the fk on the
different intervals. This matrix is solvable.

• Hypothesizing the piece-wise polynomial terms fk on each interval Ik, the trans-
fer operator L takes the form of recurrence relations that can be expanded and
collected up by powers. The expansion deploys the binomial coefficients inside
the polynomials. The expansion via binomial coefficient is purely algorithmic.

• Collecting up the powers once again gives a solvable matrix. Since it is solvable,
it can be solved by Gaussian elimination (diagonalization). Do, purely algorith-
mically.

• The final matrix is just the matrix representation of Lβ in the monomial basis,
for this fixed value of β .

How do things start, and where do we want to go?

• There are two starting points: the integer n defining the “valid” polynomial pn,
or some arbitrary β from some external source.

• If the start is a polynomial, then a root-finding algo must run, so as to generate a
bit-sequence for β to some indeterminate number of bits.

• The number of needed bits is only enough to perform the mid-point sort. If the
β sources is “internal”, as the root of a polynomial, then only a handful of bits
are needed. The number of bits are determined by the index n of the polynomial
pn. For external sources of β , there might be a countable infinity of midpoints,
and so an unbounded number of binary digits may be needed.
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• Explicit sorting can be avoided by using the visitation tree, which implicitly
encodes a left-to-right order.

• For finite orbits, the visitation tree is finite; it splits the unit interval into finitely
many pieces.

• The interval inclusion map is “symbolic” or “relational”; can be treated with an
indicator function showing inclusion. Since all inclusions follow from iteration
of the initial interval, it can be expressed as a map (injection) from binary tree to
binary tree. This is related to the visitation tree, below.

• Polynomials assigned to intervals can be treated with symbolic methods. This
includes expansion via binomial coefficient.

• The “only reason” for expansion via binomials is to collect terms, and obtain a
matrix representation for the shift in the monomial basis. Some other basis could
be chosen; the monomial basis is the simplest, in terms of combinatorics.

What, exactly, is the source of unease? Lets review the issues:

• The precise form for the matrix representation of Lβ in the monomial basis
is tangled and opaque; the closed form is available, but requires algorithms to
present it in a classical analytic form, where all matrix entries are rational func-
tions of β .

• More precisely, we do not have a purely symbolic recursive relation for the ma-
trix entries for matrices B,C. We just have a prescription of “compute midpoints
and sort them and compute inclusions” which is very far from a recursive algo.
We want that recursive algo.

• Even if a nice computer GUI was developed to show each of the individual en-
tries of the matrix as rational functions of β , the overall symmetry and structure
would remain hidden and opaque.

• For any fixed β , what interesting things about Lβ might one be able to say?
We can explicitly give its dimension (it is a product of the orbit length times the
degree of the piece-wise polynomial.) We can point out how it is shift-like. We
can point out that it’s spectrum is discrete, and is explicitly λ = β−n for degree
n piece-wise pieces.

• What else would we like to be able to say, if explicit expressions were available?

• The cascade of algorithmic operations above, how should we think about them?
We can hand-wave and say “these are the algorithms of the beta transform”, but
that is vague and overly general. We can talk about homeomorphic algorithms,
and ask about their homotopic structure. For example, are there other algorithms
that are crypto-equivalent, that produce the beta transform, but are not obtainable
by homeomorphic deformation of the above “obvious” form?
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7 Visitation Tree
The above commentary about stability and instability of functions under iteration sug-
gests that a slightly more comprehensive viewpoint should be adopted. There are sev-
eral distinct problems. First, how does the iterated transfer operator L n act on func-
tions on the real interval, and secondly, how does it act on real intervals approximated
by finite collections of points? And, for such finite collections, are the points evenly
spaced? Or should we generate them by midpoint iteration? Or in some other way?
Lets muddle about.

This is retracing some old steps; it starts as a stream-of-consciousness meander
through a concept salad, and concludes with a specific mapping of midpoints to a tree,
the visitation tree. It appears that the visitation tree is a potentially useful tool.

7.1 Space of functions
Define the space of functions on the unit interval F = {ρ : [0,1]→ R}. This is too
large and vague a set; in practice, we’ll want to work with piece-wise smooth func-
tions (chopped up polynomials) or maybe piece-wise real-analytic, or perhaps square
integrable, or perhaps continuous, etc. Lots of choices.

With this setting, the transfer operator is a function L : F →F , and we are iterat-
ing it: so working with L n. It has an obvious fixed point, the invariant measure. There
is a basin of attraction: some region of F on which L is contracting in some way,
so that the region L F is somehow “strictly smaller”, so that the Banach fixed-point
theorem can be applied.

Questions arise:

• What is the shape of this basin? The answer to this seems straightforward: it is
the set of functions for which

∫ 1
0 ρ (x)dx = c ̸= 0. Furthermore, limn→∞ L nρ =

cν with ν the Gelfond–Parry measure.

• How do we characterize “strictly smaller”? Certainly, any of the Banach norms
provide a metric, but only L1 seems to be compatible with the above definition
of the basin. Or ... wait... are we being hasty? Why not general Lp? Hmmm.

• Is the basin regular at the fixed point? That is, is it a stable fixed point? Are there
functions ρ ∈ F for which L nρ diverges? Since we seem to have picked L1

as the proper norm, the question becomes, are there ρ ∈ F such that ∥L ρ∥1 >

∥ρ∥1. We recognize this last question as being “is L a bounded operator”? I’m
pretty sure the answer is yes, it is bounded, but oddly, before now, never got
around to asking this, or exploring the answer. Huh. Blind spots.

• Claim: ∥L ∥p = 1 for all p!? For now, a working assumption. What’s more, there
is only one invariant measure ν and so ∥L − Iν∥p < 1 so that L is contracting
in all other directions, except ν . There are no unitary eigenvalues, is that right?

The above does seem to settle one issue: the largest reasonable set of functions F are
those that are Borel-meaureable. It seems that being able to talk about

∫ 1
0 ρ (x)dx is a

prerequisite; there’s not a lot left if we can’t talk about that.
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The characterization of the basin of attraction above also tells us exactly what the
wandering set is: it is the set of functions ρ for which

∫ 1
0 ρ (x)dx = 0. To talk about

these, it seems we do need an Lp norm for some p. Right?
There is only a single invariant measure, and so define F− = F\ν so that for

any ρ ∈ F there is a ρ− = ρ − cν where
∫ 1

0 ρ (x)dx = c as before. Well, we seem to
be walking down a conventional path of LRU-style decomposition but applied to an
operator. Harrumpf.

7.2 Motivation for Visitation Tree
Instead of working with F = {ρ : [0,1]→ R} lets work with F = {σ : B → R} where
B is the Borel set on the unit interval. So what we’ve really got is the inverse map
T−1 : B → B composed with the standard measure σ (A) =

∫
A ρ for any A ∈ B. That

is, σ =
∫

ρ and we should have been writing ρ ′ all along. Oh well. Anyway, this gives
L σ = σ ◦T−1.

The Borel set B can be obtained willy-nilly, but the whole point is that it is easiest
to generate it by mid-point iteration. That is, we want to generate a tree of midpoints,
and map that into the standard Cantor tree. How does that work? See below.

The idea is that the midpoints, arranged on a tree, make it isomorphic to the Cantor
tree. It provides a natural sigma-algebra, in the reference frame of the mid-point iter-
ates. That is, the map is converts the canonical cylinder sets on ∆ = 2ω to cylinder sets
that are bounded by mid-point iterates. It provides a measure. It allows working with
F = {ρ : ∆ → R} which is easier than F = {σ : B → R}.

7.3 Visitation Tree
Start with m0 = β/2 and iterate once to get m1 = β (β −1)/2 which we place at the
top of the tree. So m1 splits the interval J1 = [0,m0] into two, a left-half and a right half.
Call these two intervals LJ1 = J2 = [0,m1] and RJ1 = J3 = [m1,m0]. Then (assuming a
non-finite orbit), each subsequent mp lands inside of some earlier interval, and splits it
in two. Where does it land? That is, mp ∈ Jk for some “earlier” k. The intended interval
numbering scheme is one that preserves total order on the tree. For each interval Jk =
[a,b], there exists the smallest possible p such that mp ∈ Jk. The sub-intervals are
recursively defined as LJk = J2k = [a,mp] and RJk = J2k+1 = [mp,b].

The “visitation function” is v : N→ N that maps each iterate to the interval it sub-
divides, so that mp ∈ Jv(p). For non-finite orbits, this function is a bijection: every
interval gets subdivided, sooner or later. For the finite orbits, it collapses: subdivision
stops. For finite orbits of length ν , the visitation function is defined only up to ν .

If the orbit iteration is infinite, then this subdivision process places all midpoints
somewhere into a binary tree. We’ll call this the “visitation tree”, to indicate where
the midpoint visits. Since it is a tree, we can graph it w.r.t. the dyadic tree. Three
such maps are shown in figure 38. These can be understood as three horizontal slices
through figure 39.
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Figure 38: Visitation Tree
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Midpoint Visitation Tree

This figure shows the Borel-set-generating visitation map v, or more precisely, the
map m ◦ v−1 ◦ δ−1 : D → R, for three different values of β . The visitation function
is a map v : N → N that records which interval a midpoint lands in, so that mp ∈
Jv(p). Conversely, fixing the interval to be Jk, one has mv−1(k) ∈ Jk. The intervals
are numbered canonically, so that they can be placed in one-to-one correspondence
with the canonical dyadic tree. Thus, given a dyadic fraction (2i+1)/2n ∈ D, it is
mapped to δ−1 : (2i+1)/2n 7→ 2n−1 + i = k. This is mapped to the iteration number
p = v−1 (k) of the midpoint for that interval. Finally, m : p 7→ mp = T p (β/2) as the
actual numerical value of the p’th iterate. By construction, this map is necessarily
monotonically increasing. The goal of this map is to convert intervals defined by dyadic
fractions (along he x-axis) to intervals defined by midpoints (y-axis), thus providing
“natural” Borel sets to work with.

208



Figure 39: Visitation Map

This figure shows the same visitation map as figure 38, but arranged so that 1 ≤ β ≤ 2
bottom to top, so that a horizontal slice is a constant-β slice. The color coding is the
same as used elsewhere: black is approx zero, green is approx 0.5 and red is approx 1.0.
Note the hard takeoff for smaller values of beta: the blue-black region at the bottom lies
between β = 1 and about β = 1.2, after which the march of redness begins diagonally.
This is reminiscent of the bracket map, shown in figure 31.
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7.4 Finite Visits
The infinite tree above is very nice, but we also need a strong consistent story for the
finite orbits. Fir each orbit index n wen know exactly what it’s length ν should be, and
where the indexes go, before they stop. Lets do a table.

ν n v j Paths 2n+1
2 1 0, 1 - 11

3 2 0, 1, 3 R 101
3 0, 1, 2 L 111

4
4 0, 1, 3, 7 R, RR 1001
6 0, 1, 2, 5 L, LR 1101
7 0, 1, 2, 4 L, LL 1111

5

8 0, 1, 3, 7, 15 R, RR, RRR 10001
10 0, 1, 3, 2, 6 R, L, RL 10101
12 0, 1, 2, 5, 11 L, LR, LRR 11001
13 0, 1, 2, 3, 5 L, R, LR 11011
14 0, 1, 2, 4, 9 L, LL, LLR 11101
15 0, 1, 2, 4, 8 L, LL, LLL 11111

Legend:

• The v j column shows the entire sequence of midpoint visits. So, v0 always cor-
responds to m0 = β/2 and v1 is always m1 = β (β −1)/2, with m1 always being
the root of the tree. Then the canonical number continues: so v2 is L and v3 is R.

• The “paths” column shows exactly the same thing, but encoded as L,R paths.
It’s got a vaguely suggestive relationship to the 2n+1 column but the “obvious”
relation breaks at n=13. The 2n+ 1 column records bits as to whether or not
mp < 1/2, whereas the leading symbol of paths records whether or not mp < m1.
So there’s similarity, but not really, in the end.

• Sorting is easy; the L,R notation tells us exactly when to swap.

• If the path begins with an R, then m1 = β (β −1)/2 < mp and therefore β/2 <
mp/β +1/2 and so it is out-of-bounds, and cannot contribute to L .

210



8 Fractal Eigenfunctions
The Bernoulli operator has the Blancmange curve as an eigenfunction; this is part
of a class of fractal eigenfunctions that form the continuous spectrum of the transfer
operator. Linear combinations of these can be resumed to define a continuous spectrum
of smooth c∞ eigenfunctions, smooth everywhere except at the endpoints, where they
diverge. This section reviews that construction, and applies it to the β -function. The
resulting coherent states are not eigenstates; the obstruction is the usual one.

8.1 Bernoulli transform
The Bernoulli transform is the β -transform, at β = 2. The transfer operator acts as

[L f ] (x) =
1
2

[
f
( x

2

)
+ f

(
x+1

2

)]
The shift is τ (x) = 2x mod 1. A family fractal eigenfunctions are the coherent func-
tions of any master wavelet s ∈ kerL . Examples include s(x) = sin2πx and sawtooth
function

s(x) =


x− 1

4 for x < 1
2

3
4 − x for x ≥ 1

2
s(x mod 1) for x /∈ [0,1]

It is easy to verify that L s = 0 for either of these two examples. Any function s that is
odd about 1/2 and periodic with period one will be in the kernel s ∈ kerL and so can
be used to build the eigenfunctions.

The family is the coherent-wave sum

ψw,l (x) =
∞

∑
n=0

wns((2l +1)τ
n (x))

where 0 < w < 1 is any real number (or, more generally, any complex number within
the unit disk) and l ∈ N is any non-negative integer. For s the sawtooth, and l = 0 this
is just the Blancmange curve.

It is not hard to verify that L ψw,l =wψw,l . The proof is straight-forward: L ( f ◦ τ)=
f since the transform and the transfer operator are adjoint to one-another. Then, since
L s = 0, the coherent-wave sum is just itself, again.

8.2 Beta Transform
The previous construction will build coherent states for the β -transform, but these are
not eigenfunctions. The obstruction is that L ( f ◦ τ) ̸= f and so the proof fails to go
through. This is reviewed below.

The transfer operator is given in eqn 17, copied below.

[
Lβ f

]
(y) =

1
β

[
f
(

y
β

)
+ f

(
y
β
+

1
2

)]
Θ

(
β

2
− y
)
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For the case where f (y) vanishes when y> β/2, as would be hold for an eigenfunction,
then it is convenient to use the identity f (y) = f (y)Θ(m0 − y) with m0 = β/2 and
m1 = β (β −1)/2 to write

[
Lβ f

]
(y) =

1
β

[
f
(

y
β

)
Θ(m0 − y)+ f

(
y
β
+

1
2

)
Θ(m1 − y)

]
The shift is τ = Tβ as defined in eqn 4, copied below

Tβ (x) =

{
βx for 0 ≤ x < 1

2
β
(
x− 1

2

)
for 1

2 ≤ x ≤ 1

The expression for L ( f ◦ τ), for any f (y) = f (y)Θ(m0 − y) is obtained by plugging
through:

[
Lβ

(
f ◦Tβ

)]
(y) =

1
β

[
f
(

y
β

)
Θ

(
β

2
− y

β

)
+ f

(
y
β
+

1
2

)
Θ

(
β

2
−
(

y
β
+

1
2

))]
=

1
β

f (y) [1+Θ(m1 − y)]

The step function means the transfer function is unable to undo the action of the shift.
For β = 2, the iterate is m1 = 1 and the Bernoulli result L2 ( f ◦T2) = f is recovered.

One can still construct the coherent states, as before. They just won’t be eigenstates.
Given any v ∈ kerLβ , write the sawtooth s(x) = v(x mod 1) so as to be explicitly
periodic. Then define

ψw,l (x) = Θ(m0 − x)
∞

∑
n=0

wns
(
(2l +1)T n

β
(x)
)

(42)

Applying the transfer operator to this gives

[
Lβ ψw,l

]
(y) =

[
Lβ s◦ (2l +1)

]
(y)+

∞

∑
n=1

wn
[
Lβ s◦ (2l +1)T n−1

β
Tβ

]
(y)

=
[
Lβ v

]
(y)+

w
β
[1+Θ(m1 − y)]

∞

∑
n=0

wns
(
(2l +1)T n

β
(y)
)

= s
(
(2l +1)y

β

)
Θ(y−m1)+

w
β

ψw,l (y) [1+Θ(m1 − y)]

For l = 0, the first term is vanishing. For β = 2, one has m1 = 1 and the Bernoulli form
is recovered.

8.3 The Kernel
This section provides a brief description of the kernel.

212



A function v ∈ kerLβ if and only if

Lβ v =
1
β

[
v
(

x
β

)
+ v
(

x
β
+

1
2

)]
= 0

which immediately implies v(x)+ v(x+1/2) = 0. In addition, if v is zero on [β/2,1]
then it must also vanish on the interval [(β −1)/2,1/2].

Equivalently, v is in the kernel if it has the form

v(x) =


f (x) for 0 ≤ x < β−1

2

0 for β−1
2 < x < 1

2

− f
(
x− 1

2

)
for 1

2 ≤ x < β

2

0 for β

2 < x ≤ 1

for any function f .
In the subsequent examples, v generated by

f (x) = x− β −1
4

(43)

will be used. This is a sawtooth, (or cross-section of a volcano) and the corresponding
ψw,l (x) resembles the Blancmange curve.

8.4 Anything else?
Define the coherent state ψw,l (x) as in eqn 42. Then there’s a vaguely interesting
identity [

Lβ ψw,lΘ
]
(y) =

1
β

ψw,l

(
y
β

)
Θ(m0 − y)

where the Θ on the left-hand-side is Θ(m1 − x) so that everything above 1/2 is knocked
out. Note that the right-hand side has no explicit w terms. It feels as if it could be used
to build something clever, but ... No, its just half of the grand total.
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Figure 40: Almost-Resonance
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Example of an almost-resonance. This is obtained numerically, by constructing a co-
herent state ψw,l (x), as defined in eqn 42, for l = 0,β = ϕ,w = 0.7 and v(x) generated
from eqn 43. The result is an “almost eigenfunction”; its OK, but not a very good.
However, L 9ψ and L 10ψ generate the figure above. The eigenvalue is λ ≈ 0.728,
good to three decimal places. This is specifically for L 10ψ = λL 9ψ .

9 Almost-resonances
Numerical exploration of the coherent states constructed in the previous section reveals
a number of almost-eigenfunctions. One is shown in figure 40. Selecting some ε > 0,
these are (normalized) functions f for which there is some λ∫ 1

0
|λ f (x)− [L f ] (x)|p dx < ε

(after normalizing
∫ 1

0 | f (x)|p dx = 1 so that the ε makes sense.) If there is one of these
for any positive ε > 0 then, by compactness/completeness the whole thing will con-
verge to an eigenfunction. So this question is just as much about almost-resonances:
are there small-but-finite ε that prevent almost-resonances from becoming true reso-
nances? Where are they? What are they like?

9.1 Iteration Confusion
Iterating on L causes exposes cyclic behavior, sometimes seeming periodic, some-
times chaotic. This can be confusing if one is not prepared for it. The underlying
cause is that, in general, L has complex-valued eigenvalues, approximately cyclic.
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This results in cyclically-recurring almost-eigenvectors. The symptom and explanation
presented below.

This is explored numerically. Some initial vector f is chosen, such that
∫ 1

0 | f (x)|dx=
1 so that f is normalized, but also with

∫ 1
0 f (x)dx = 0, so that f is orthogonal to the in-

variant measure (see note on orthogonality below). Setting f0 = f , L is iterated, so that
fn+1 = L fn. After each step, an =

∫ 1
0 | fn (x)|dx is computed. The sequence an+1/an

appears to be sometimes chaotic, sometimes ergodic, sometimes periodic. What is this
motion?

The confusion comes from assuming that the eigenvalue spectrum of L is purely
real. If L had a purely real eigenvalue spectrum (as is the case for the Bernoulli shift),
then one would expect that repeated iteration would cause eigenvectors associated with
smaller eigenvalues to vanish geometrically (by powers) – to iterate away. They don’t.

9.1.1 Cyclic Blocks

Here’s a model for explaining what’s going on. The operator is filled with quasi-cyclic
blocks, for example  0 0 a

b 0 0
0 c 0


Iterating on above will cause pretty much any vector to bounce around in some quasi-
cyclic, quasi-ergodic fashion. The above has one real, two complex eigenvalues. The
characteristic polynomial is λ 3 −abc = 0, and so one real eigenvalue at λ = 3√abc and
two more at complex λ =− 3√abc

(
1± i

√
3
)
/2. If we get lucky and find the eigenvec-

tor for the real eigenvalue, all is well. Anything else will bounce in a cycle.
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10 Generating Functions
The β -polynomials can be defined via the mask bits θn or via the orbit summatory
function ψn. Corresponding to each is a unique positive real root βn = rn. This section
takes a very short look at the generating functions for these sequences.

For any sequence ck, the ordinary generating function is

OG(ck;z) =
∞

∑
k=1

ckzk

The exponential generating function is

EG(ck;z) =
∞

∑
k=1

ck
zk

n!

Numerical results include OG
(
θk; 1

2

)
= 1.93258880035365 · · · This is not in OEIS.

Next, OG
(
rk; 1

2

)
= 3.0832181425255 · · · . This also is not in OEIS.

Next, OG
(
ψk; 1

2

)
= 4.14955396300387 · · · . This also is not in OEIS.

Exploring these visually, on the complex plane, only the EGF is visually interest-
ing. For both θn and rn, the EGF shows some randomly, uniformly distributed zeros,
showing no particular structure. Ordinary double precision allows calculations to about
|z|< 800 before numeric overflow kills things.

The EGF for ψn is much more interesting. Here, the zeros are concentrated into
rings, and uniformly distributed about any given ring. A zero-free ray extends along the
positive real axis. These rings have a radius of approximately |z| ≈ 35,55,100,190,350
with these figures good to about one-and-a-half digits. The rings are wide, and have
structure. This is shown in figure 41. The rings are presumably due to ψn being con-
centrated at powers of two, which would be reflected in ring radii of 32, 64, 128, 256...
which is approximately what is seen.

Inspired by the Lambert series, which arranges poles corresponding to the roots of
unity along the edge of the unit disk, one may do the same for the golden polynomials.
Thus, define the series

λ (z) =
∞

∑
k=1

θn
zn

pn (z)

This results in a disk that is sufficiently crazy and unusual, that it is worth showing. It
arranges poles and zeros into nearby pairs, shown in figure 42.

The conclusion to be drawn here is that, although there are lots of generating func-
tions, and possible relations, none are particularly promising.
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Figure 41: Complex Zeros of EG(ak;z)

This figure shows the zeros of EG(ak;z) in the complex plane. The width of the figure
is about 800, so that the outermost circle is at about |z| ≈ 350. The color coding is
such that the zeros appear in black, while red denotes a large magnitude. The asymp-
totic behavior is very approximately |EG(ak;z)| ∼ e|z|/ |z|, presumably governed by
the asymptotic behavior of Moreau’s necklace-counting function. The ring structure
presumably reflects the fact that an is concentrated just below powers of two.
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Figure 42: Lambert-inspired disk

The above illustrates the phase plot of the Lambert-inspired series λ (z). The colors
encode argλ (z) with black corresponding to −π , green to zero, and red to +π . Note
both right-handed and left-handed gradients. The left-handed ones are zeros, the right-
handed ones are poles. It is quite unusual to see such structure.
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11 Beta Odometer
It is clear that the figure 30 has some self-similarity properties. This section attempts
to describe that self-similarity, by identifying sequences of discontinuities, and the
regions that they bracket. This allows a labeling system to be developed for each dis-
continuity, and a bracketing relationship to be given for each self-similar interval.

As always, discontinuities correspond to β values that have finite orbits, and that
each finite orbit is associated with a polynomial pn (x) for which β = rn is the unique
positive real root pn (rn) = 0. Associated to each polynomial is a mask function θn =
θn (rn) given in eqn 32. Discontinuities are associated to indexes n only when 1 = θn;
the mask function acts both to identify the finite orbits and also the endpoints of a
self-similar intervals.

The labeling will be for the form of a sequence or string s = [m1,m2,m3, · · · ] of
non-negative integers. An example is shown in in figure 43, which can be compared
to figure 30. The location β of the discontinuity will be written as β ([· · · ]) = β [· · · ],
sometimes dropping parenthesis if the meaning is clear from context. Associated to
each sequence is an integer index n = η ([· · · ]) = η [· · · ]. By definition, indexes get
labels if and only if 1 = θn; the mask function is the final arbiter for the labels. By
construction, the identity pη(s) (β (s)) = 0 must hold for all finite strings s. The task
of this section is to expose and describe the bijection between the strings s and the
corresponding indexes n = η (s).

The development can be extended to infinite-length strings, as well. The roots rn
are dense in the interval 1 ≤ β ≤ 2. The mapping of self-similar intervals provided by
the bracketing relationship guarantees that sequences of intervals converge to a point.
The labeling system guarantees that all labels within an interval share a common prefix
with the endpoints. Thus, as the prefix gets longer, the bracketed interval gets smaller,
converging to a unique limit. This is reminiscent of the way in which finite-length con-
tinued fractions converge to a unique limit. However, unlike continued fractions, each
finite-length β label can be unambiguously associated to one unique infinite-length
string. As a result, the mapping is a bijection between infinite-length strings s ∈ Nω

in Baire space, and all of the reals in the interval 1 < β ≤ 2. This is a true bijec-
tion, so one-to-one and onto. This is very unlike the situation with continued fractions,
which cannot represent the rationals with infinite-length strings. Continued-fraction
mappings have “holes” at the rationals; the beta mapping has no holes.

11.1 The bracketing relation
The primary task is to exhibit the function η : N<ω →N that maps finite-length strings
to indexes. This is given through a recursion relation that depends on the index mask
θn given previously, in eqn 32. The mask plays a central role; it encodes informa-
tion about the polynomials and the mid-point orbits; it also encodes the bracketing and
self-similarity properties of the system. All this implies that, in a certain sense, θ is
chaotic and ergodic; it captures the complexities of the β -transform in full. In partic-
ular, this implies that there is no closed-form expression for θ ; it can only be defined
only recursively, even in principle.

Comparing figure 43 to 30, the labeling begins with the main sequence of peaks,
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Figure 43: Discontinuity Labels

This figure shows the integral I (β ) = ∑
∞
n=0 β−nT n

(
β

2

)
with 1 < β ≤ 2 running along

the horizontal axis. Each discontinuity corresponds to the location of a real root of
one of the β -Golden polynomials. Prominent discontinuities are labeled with a finite
sequence of non-negative integers following a regular pattern.
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shown as 2k in figure 30 and as [k] in 43. At the center of the diagram is [0], which
corresponds to β = ϕ , root of the polynomial p1 (β ) = β 2 −β − 1 = 0. Reading off
the indexes for the main sequence, these are labeled as n = 2k = η [k]. The labeling is
defined such that this holds as an identity. The label [−1] will be taken to correspond
to β = 2 in upper right of the figure. Using a negative number for this point already
breaks the idea that the labels will consist of non-negative integers. Later on, it will be
argued that [−1] can be understood as an infinite string of zeros; but, for now, it can be
treated as a funny special value.

There seems to be a clear visual correspondence between the interval ϕ = β [0] <
β [−1] = 2 and the other intervals β [k] < β [k−1]. But also it would seem that each
of these should correspond to the entire interval 1 = β [∞] < β [−1] = 2. With this in
mind, the largest discontinuity to the right of [0] should correspond to [0] itself: call
this discontinuity “the leader” or “the front” f . Write the bracketing relationship as
ℓ Z⇒ f ⇐ \ ρ with ℓ and ρ with the left and right endpoints of the interval bracketing f .

With this, several identities emerge: first, that β (ℓ)< β ( f )< β (ρ). It also appears
that η (ℓ) < η ( f ) > η (ρ) will hold, so that the bracketed leader will always have an
index greater than indexes on either side. With this notation, one has the following
intervals

Bracket nℓ Z⇒ n f ⇐ \ nr βℓ < β f < βr

[∞] Z⇒ [0]⇐ \ [−1] ∞ Z⇒ 1 ⇐ \ 0 1 < ϕ = 1.61803... < 2
[∞] Z⇒ [1]⇐ \ [0] ∞ Z⇒ 2 ⇐ \ 1 1 < 1.46557... < ϕ

[∞] Z⇒ [2]⇐ \ [1] ∞ Z⇒ 4 ⇐ \ 2 1 < 1.38028...
[∞] Z⇒ [3]⇐ \ [2] ∞ Z⇒ 8 ⇐ \ 4 1 < 1.32472...

The right-most major interval is [0] Z⇒ [0,0]⇐ \ [−1] so that the labeling rule is to
extend the string by appending a zero. The appended zero denotes the leader for that
bracket. On the right, a sequence of labels appear, as shown below:

Bracket nℓ Z⇒ n f ⇐ \ nr βℓ < β f

[0] Z⇒ [0,0]⇐ \ [−1] 1 Z⇒ 3 ⇐\ 0 ϕ < 1.83929...
[0] Z⇒ [0,1]⇐ \ [0,0] 1 Z⇒ 6 ⇐\ 3 ϕ < 1.75488...
[0] Z⇒ [0,2]⇐ \ [0,1] 1 Z⇒ 12 ⇐ \ 6 ϕ < 1.7049...
[0] Z⇒ [0,3]⇐ \ [0,2] 1 Z⇒ 24 ⇐\ 12 ϕ < 1.67365...

From this table, it can be inferred that the recursive sequence index numbering is
given by η [0,m] = 3 · 2m. This corresponds to the mask identity 1 = θ (3 ·2m) for all
m.

This is sufficient to give a flavor of how bracketing works, and to expose an example
of index-doubling within a bracketed interval. The general form of the bracketing
relationship is

[m1,m2, · · · ,mk] Z⇒ [m1,m2, · · · ,mk+1]⇐\ [m1,m2, · · · ,mk −1] (44)

The case where mk = 0, resulting in a trailing −1 in the sequence, is handled by means
of a “parlor trick”. Sequences with a trailing −1 shorten in length, so that [· · · ,m,−1] =
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[· · · ,m−1]. The final comma disappears, and the trailing digit is decremented by one.
This may seem like a peculiar rule, but is really just a shorthand to simplify the notation
for the intervals.

This perhaps most easily understood by plotting actual β values for interval end-
points. One bracketing relationship is [1,0,0] Z⇒ [1,0,0,0]⇐ \ [0] which corresponds to
42 Z⇒ 170 ⇐ \ 1. The parlor trick just allows writing the right-hand side as [1,0,−1] =
[1,−1] = [0]. That this is the correct right-hand side is revealed by plotting

β [1,0,0] = 1.60135... < β [1,0,0,0] = 1.61193... < β [0] = 1.61803...

and observing that [0] is necessarily the right-hand limit for the interval, as there is no
other appropriate discontinuity for [1,0,0,0] to be bounded by.

The formula for η is recursive. The trailing digit of a sequence always encodes an
index doubling. This allows a general sequence to be reduced to one with a trailing
zero.

η [m1,m2, · · · ,mk,n] = 2n
η [m1,m2, · · · ,mk,0]

The above is written with an explicit η , which will be dropped from subsequent ex-
pressions. The context should be clear enough: each bracketed form is in one-to-one
correspondence with it’s integer index.

Truncating the trailing zero is more difficult; this is where the index mask θ comes
to the forefront. The recursion rule to truncate the trailing zero is

[m1,m2, · · · ,mk,0] = 2p (2 [m1,m2, · · · ,mk]+1)

where p is the smallest integer for which θ (2p (2 [m1,m2, · · · ,mk]+1)) = 1. Finding
this value of p requires a recursive evaluation of the expression for θ . Although n =
[m1,m2, · · · ,mk] is necessarily a valid index, by construction, it is not generally the case
that 2n+1 is valid. The simplest example is 4 = η [2], for which one has 2 ·4+1 = 9
but θ (9) = 0. A glance at the earlier table of valid sequences shows that θ (18) = 0 but
θ (36) = 1 and so one has that [2,0] = 22 (2 [2]+1) = 22

(
23 +1

)
= 36. As luck would

have it, this rule generalizes, so that [k,0] = 2k (2 [k]+1); however, such generalizations
are not always possible. Recursion is controlled by θ .

It is not hard to find many examples for which p = 0. There are many other ex-
amples for which p = m1. In yet other cases, one discovers that p = ∑i mi seems to
hold. However, none of these are general rules; there is no closed-form expression for
p as a function of [m1,m2, · · · ,mk]. This may seem frustrating, but in the end, should
not be surprising. There is no closed-form expression for the mask function θ that is
not recursive. The mask θ encodes the mid-point orbits; the mid-point orbits encode
polynomials; the real root of the polynomials equals the β value that is generating that
orbit. The orbits are in general chaotic, the progress of the mask θ is chaotic as well.
However, thanks to the recursive definition of the polynomials given in eqn 31 and il-
lustrated in figure 28, an appropriately bracketed root will eventually appear, at some
finite integer p. In general, but not always, p will be small. The root will always lie in
between the two endpoints of the bracketed interval, given by eqn 44.
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11.2 Bijection to Baire Space
The bracketing relationship allows a simple proof that infinite sequences (the non-
finite betas), have a unique convergent. Let β = β [m1,m2, · · · ,mk] be the root of the
polynomial determined by [m1,m2, · · · ,mk]. This root can be directly computed as the
convergent of a β -Fibonacci sequence, as will be demonstrated in an upcoming section.
The relevant point here is that, as numerical values, one has that

β [m1,m2, · · · ,mk−1]< β [m1,m2, · · · ,mk]< β [m1,m2, · · · ,mk −1]

The inequalities are strict. Thus, any given finite-length sequence is bounded above
and below by two convergents. This allows infinite-length sequences [m1,m2, · · · ] to be
defined without ambiguity: they are always bounded above and below, by increasingly
tight bounds, and so have have a unique convergent.

The parlor trick turns out to be just the image of β = 2 under self-similarity trans-
formations. The far-right bound is

[0,0,0, · · · ] = [−1]

The shifted version provides

[m1,m2, · · · ,mk,0,0, · · · ] = [m1,m2, · · · ,mk,−1]

which can be interpreted as the two points on either end of a discontinuity.These iden-
tities are meant to be interpreted as the values of limiting sequences. For example, for
the second identity, on has that, for a 1 followed by n zeros, that

[1,0, · · · ,0]→β
2n+3 −β

2n+2 −β
2n −·· ·−1

=

(
β 2 −β −1

)
β 2n+3 +1

β 2 −1

and so in the limit of large n → ∞, the root of this polynomial approaches ϕ .
The extension of finite sequences into infinite ones provides a bijection (one-to-one

and onto) of all real values 1 < β ≤ 2 into Baire space Nω , where N = N0 are the
non-negative integers.

11.3 Index distribution
Not all index values appear in the sequence. For any given order, the number expected
is given by Moreau’s necklace-counting function. But what is the actual distribution?

Attempted graph, its ugly, spiky, unilluminating.

11.4 β -Odometer
The continued fraction expansion can be seen to be an odometer that is of characteristic
zero. This is unusual, as odometers are conventionally described in characteristic p. A
quick review of the concept of an odometer is in order.
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Figure 44: Beta odometer
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β-Odometer

This visualizes the β -odometer in terms of continued fractions. Any given sequence
[m1,m2, · · · ,mk] has an associated β value; this is graphed on the horizontal axis. It
also can be interpreted as a continued fraction, this is shown on the vertical axis. It is
clearly self-similar. Some of the vertical joins are drawn not quite vertical; this is due
to insufficient convergence during graph generation.

An odometer of characteristic p is defined as the set of all infinite-length integer
sequences (a0,a1, · · ·) with each ak drawn from the cyclic group Z/pZ. This set is
endowed with a transition function T given by the map

T (a0,a1, · · ·) 7→

{
(a0 +1,a1, · · ·) if a0 ̸= p−1
(0, · · · ,0,ak +1,ak+1, · · ·) if (a0,a1, · · ·) = (p−1, · · · , p−1,ak,ak+1, · · ·)

That is, it increments a0 by one, and if that rolls over, then a carry bit is propagated to
the next term, and so on. This is just p-adic addition, treated as a dynamical system.
It can also be interpreted as a map of the unit interval, to itself, when the sequence
(a0,a1, · · ·) is interpreted as x = ∑n an p−n−1. As a map of the unit interval, it permutes
a countable sequence of intervals of decreasing size.

The β -odometer is defined as the bijection that arises by interpreting a sequence
[m1,m2, · · · ,mk] either as specifying a β value or a continued fraction. The β value is
of course, the root of the corresponding polynomial; this root can be computed directly,
as a convergent of a β -Fibonacci series, as shown in a later section. The corresponding
continued fraction is

c = c([m1,m2, · · · ]) =
1

m1 +1+
1

m2 +1+
1
· · ·
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where this differs from the conventional definition, being off-by-one, because the mk
can be zero. It is visualized in figure 44.

That the mapping is a bijection is not hard to demonstrate. Certainly, for finite-
length sequences, continued fractions are rationals; each such sequence determines a
unique rational, and thus the finite β orbits are mapped to the rationals in this way (thus,
the map is an injection). Most orbits of the β -transform are not finite, however; these
map to infinitely long sequences of bits in the bit expansion. The bracketing relation
44 guarantees that an infinitely sequence is bounded above and below by pairs of finite
sequences. The bound applies not only to the sequences, but also to the corresponding
β values. The bounds are increasingly tight as the sequence lengthens; by standard
epsilon-delta arguments, the convergent is unique for infinite-length series. That is,
each distinct non-finite value of β corresponds to a single, unique infinite sequence
[m1,m2, · · · ]. It is not hard to see that all possible such sequences occur. Likewise, ev-
ery irrational number corresponds to a unique infinite-length continued fraction; again,
every possible sequence occurs. Thus, the odometer provides a bijection between irra-
tionals and non-finite orbits. The only difficulty is presented by the rationals: any given
rational number has several inequivalent continued fraction expansions, and is thus not
strictly invertable. This difficulty is easily swept away by adopting an expansion con-
vention: e.g. by taking the shortest possible continued fraction representation for any
given rational. In this way, one sees that the odometer is a bijection.

The use of the word “odometer” is perhaps a bit cryptic. The rationale for this can
be clarified by looking at how it “rolls over”. The prototypical roll-over occurs at the
juncture of β = ϕ = 1.618 · · · . One observes the sequence

β [0,1] = 1.75488 · · ·
β [0,2] = 1.70490 · · ·

...

β [0,16] = 1.61816 · · ·
β [0,N]> ϕ for N → ∞

β [0] = β [1,−1] = β [1,0,0, · · · ] = ϕ

β [1,0,0, · · · ,1, · · · ]< ϕ

That is, the sequence [0,N] for N → ∞ rolls over to [1,0,0, · · · ]. It is this peculiar
behavior that merits the name “odometer”.

Unlike the p-adic case, there is no way to increment the odometer by one unit.
The best one can do is to write out the expansion for β , decrement by some arbitrarily
small ε and notice that the expansion for β − ε has rolled over at some location. The
increment is, formally speaking, an infinitesimal.

This can be compared to how continued fractions roll over. Using our off-by-one
notation, write

c([0,0,N]) =
1

1+
1

1+
1

N +1

= 0.5+ ε
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As the limit N → ∞ is taken, this rolls over to

c([1,M]) =
1

2+
1

M+1

= 0.5− ε

which rolls over to which is, in a sense, backwards: the sequence [1,N] for N → ∞ does
not roll over to [2,0,0, · · · ] as one might expect some kind of plausible odometer to do,
but instead to [0,0,N].

The p-adic odometers are interval maps; they rearrange countable sequences of
subintervals of the unit interval. Here, likewise, the beta odometer rearranges intervals,
at least in the sense that rearrangements are disjoint. So, the interval (ϕ,2) is mapped
to
( 1

2 ,1
)

albeit in a fractal manner, and likewise each subinterval bounded by the de-
scending series of roots to β n −β n−1 − 1 = 0 is mapped to the interval

( 1
n ,

1
n−1

)
. By

self-symmetry, the sub-intervals will rearrange as well.

11.5 Odometer symmetry and the Vandermonde matrix
This section is 98% junk. The bracketing binary tree gives the appropriate symmetry
for the betas. This section tries to do the same thing, except using the sequence labels
instead. There are two issues below: first, some off-by-one errors in the initial write-
up, and some general confusion, and issue two: what the heck are we doing here, that
isn’t in the binary tree given earlier? The question mark and the interval encoding are
similar, but don’t really line up; see irred-tree.c and irred-tree.gplot for details. So this
section is mostly junk.

The self-symmetry of continued fractions is described by the dyadic monoid.[33]
General elements of the monoid have the form γ = ga1 ◦ r ◦ga2 ◦ · · · ◦gaN which act on
an individual sequences [x] as

γ : [x] 7→ [a1,a2 −1,a3 −1, · · · ,aN−1 −1,aN −2,x]

All of the ak > 0 are taken as positive integers, except possibly the first.
When the sequence [x] is understood as a continued fraction, i.e. when applying c :

[x] 7→ c([x]), then the two generators g,r can be understood as Möbius transformations
acting on the unit real interval: gM (x) = x/(x+1) and the reflection rM (x) = 1− x.
That is, there is a commuting diagram c ◦ g = gM ◦ c and likewise c ◦ r = rM ◦ c. That
is, one can go back and forth between the unit interval, and the sequence notation by
using the continued-fraction mapping.

Of course, the beta odometer offers another interpretation of sequences as real num-
bers. Presumably, there are functions gB : R→ R and rB : R→ R that commute with
the beta map: that is, β ◦g = gB ◦β and likewise β ◦ r = rB ◦β .

It is not clear if there is an analytic form for gB. Writing

gB (x) =
h(x−1)

1+h(x−1)

and experimentally hunting for h reveals an approximation that is good to one percent:

h(x)≈ x
(
1− x/ϕ

2)
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suggesting that an analytic series might be possible. Pursing this requires the inversion
of a Vandermonde matrix applied to a shift sequence; this appears to be possibly ill-
conditioned.

XXX Confusion abounds! Need more care and a possible redo!
These elements can be put in one-to-one correspondence with the infinite binary

tree, i.e. the dyadic monoid. Of course, γ can also be written as a sequence itself, so
the dyadic self-symmetry is just an action of finite-length sequences on arbitrary-length
sequences, and they are more-or-less nothing more than the act of pre-pending a prefix
string. All the confusion and etc. is with avoiding making off-by-one errors during the
prefixing operation, and with making explicit identification with the matching Möbius
transformations, etc. A non-even number of r’s are also a pain in the neck. XXX
FIXME. (and fix in the beta paper, too. This is silly-muddled.)

11.5.1 Some continued fraction identities

A short aside to refresh our acquaintance with some continued fraction identities. Ra-
tionals have two inequivalent finite continued-fraction expansions:

c([m1,m2, · · · ,mk,0]) = c([m1,m2, · · · ,mk +1])

If one allows ∞ in an expansion, then one gets a sequence truncation:

c([m1,m2, · · · ,mk,∞,mk+2, · · · ]) = c([m1,m2, · · · ,mk])

The rollover discussed above corresponds to

c([m1,m2, · · · ,mk,0,∞]) = c([m1,m2, · · · ,mk +1])

Defining extended Baire space as (N∪∞)ω , then the continued fraction mapping will
hit all of the rationals. The mapping is not one-to-one, since the first occurrence of ∞

terminates the show, and all strings following this collapse onto the same rational.
Allowing −1 into the mix provides some oddball identities, including a no-op:

c([−1,m1,m2, · · · ]) = c([m1,m2, · · · ])

and erasure of the last digit:

c([m1,m2, · · · ,mk,−1]) = c([m1,m2, · · · ,mk−1])

In the middle of the string, one gets a drop:

c([m1,m2, · · · ,mk,−1,mk+2, · · · ]) = c([m1,m2, · · · ,mk +mk+2, · · · ])

11.5.2 Vandermonde

An explicit expression for g and r for the odometer is not obvious. Numeric work
indicates that g(x)≈ x

(
1− x/ϕ2

)
. This works because the roots almost line up.

Let fn (β ) = β n+1−β n−1 and let ϕn be the (one and only) real root of fn(ϕn) = 0.
Finally, let αn = ϕn−1. The remapping requires that g(αn) =αn+1 must hold for n≥ 0
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as an exact identity. The above approximate g approximately obeys this identity. That
is, g acts as a (right-)shift on the root sequence.

Certainly, an analytic series can be obtained; its not clear if this series is adequate
for describing the self-symmetry. Let’s proceed anyway.

Write

g(x) = x+
∞

∑
n=2

gnxn

This can be solved subject to the above constraints by inverting
1 1 1 · · ·

α1 α2
1 α3

1 · · ·
α2 α2

2 α3
2 · · ·

...
...

...
. . .




1
g2
g3
...

=


α1
α2
α3
...


This matrix is (more or less) a Vandermonde matrix. It can be brought into a more
explicit form by writing g1 = 1 and g0 = 0 and α0 = 1. Then one has

1 α0 α2
0 α3

0 · · ·
1 α1 α2

1 α3
1 · · ·

1 α2 α2
2 α3

2 · · ·
...

...
...

...
. . .




g0
g1
g2
g3
...

=


α0
α1
α2
...


which is explicitly an (infinite-dimensional) Vandermonde matrix. Any given finite
Vandermonde matrix has a non-vanishing determinant, and is thus invertable. Explicit
expressions for the inverse can be readily found on the internet. As a general rule,
Vandermonde matrices are known to be highly ill-conditioned, and difficult to invert
numerically.[43]. In principle, we can avoid such difficulties, as we have precise def-
initions for all quantities involved; thus, simpler notation, such as that provided by
Rawashdeh[44] overpowers other concerns. Still, it is far too complicated.

The shift nature of this can be more directly illustrated. Let

A =


1 α0 α2

0 α3
0 · · ·

1 α1 α2
1 α3

1 · · ·
1 α2 α2

2 α3
2 · · ·

...
...

...
...

. . .


and

T =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .


and

α =


α0
α1
α2
...


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Then the above eqn takes the form

Ag = T α = TA


0
1
0
...


Presuming that A is invertable, then

g = A−1TA


0
1
0
...


So the desired solution picks out one column from a shift that uses a Vandermonde
matrix as the similarity transform.

The rows of A are the iterates of the monomials in a quotient ring. So, first of
all, the polynomials fn (β ) are irreducible (over Q; they have one and only one real
root; that root is not a rational number). The quotient ring Q [β ]/ fn is thus a field.
It’s also a vector space, spanned by the monomials 1,β ,β 2, · · · ,β n as basis vectors,
where modulo fn means that β n+1 = β n + 1. Of course, the root ϕn is an algebraic
element of Q [β ]/ fn and so Ln is a simple extension of Q generated by ϕn. The “first
ring isomorphism theorem” states that Q [β ]/ fn and Ln are isomorphic.

(Note, BTW, that we’ve broken our convention for n used in the rest of the paper.
Everywhere where we have n in this section, it should actually be 2n to be consistent
with earlier notation.)

What is the orbit of ϕm
n for m ∈ N? Numerically, since ϕn > 1, taking its powers

will clearly blow up. The corresponding β -Fibonacci sequence is F(n)
m+1 = F(n)

m +F(n)
m−n

and so one can immediately write ϕm
n = F(n)

m ϕn
n +F(n)

m−1ϕn−1
n + · · ·+F(n)

m−nϕ0
n as the orbit

of ϕm
n in Ln.
In the present case, we have α1 = ϕ1 − 1 = ϕ − 1 and so α2

1 = 1−α1 = 2−ϕ ,
and onward: α3

1 = 2α1 − 1 and α4
1 = 2− 3α1 and α5

1 = 5α1 − 3 and α6
1 = 5− 8α1

and so clearly the Fibonacci sequence is showing up. For the next row, we have that
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ϕ3
2 −ϕ2

2 −1 = 0, and so the second row has

α2 = ϕ2 −1

α
2
2 = ϕ

2
2 −2ϕ2 +1

α
3
2 =−2ϕ

2
2 +3ϕ2

α
4
2 = 3ϕ

2
2 −3ϕ2 −2

α
5
2 =−3ϕ

2
2 +ϕ2 +5

α
6
2 = ϕ

2
2 +4ϕ2 −8

α
7
2 = 4ϕ

2
2 −12ϕ2 +9

α
8
2 =−12ϕ

2
2 +21ϕ2 −5

α
8
2 = 21ϕ

2
2 −26ϕ2 −7

α
9
2 =−26ϕ

2
2 +19ϕ2 +28

α
10
2 = 19ϕ

2
2 +9ϕ2 −54

α
11
2 = 9ϕ

2
2 −63ϕ2 +73

I am not enlightened by staring at that. Brute force does not appear to work on this.
It’s still an interesting problem: each row of the Vandermonde matrix is associated

with the polynomial β n+2−β n+1−1= 0 and so each row will be some chaotic, iterated
polynomial – that is, the β -Fibonacci sequence that delivers ϕn, except that since αn =
ϕn−1, each row is multiplied by the Pascal matrix (the matrix of binomial coefficients).
That is,


1 ϕ0 ϕ2

0 ϕ3
0 · · ·

1 ϕ1 ϕ2
1 ϕ3

1 · · ·
1 ϕ2 ϕ2

2 ϕ3
2 · · ·

...
...

...
...

. . .




1 −1 1 −1 · · ·
0 1 −2 3 · · ·
0 0 1 −3 · · ·
0 0 0 1 · · ·

...
. . .




g0
g1
g2
g3
...

=


α0
α1
α2
...


However, this is ill-conditioned. For the matrix A, we had 1 > αm

n for all m,n and even
αn > αn+m for all m,n so A seems well-behaved .... I guess that means A−1 is poorly
behaved. Here, its worse; one has 1 < ϕm

n for all m,n so everything blows up.
What else can we do? Well, there’s this: write fn (β ) = β n+1 − β n − 1 and note

that these are easily generated recursively: fn+1 (β ) = β fn (β )+β − 1. The ordinary
generating function is easy to find:

∞

∑
n=0

yn fn (β ) =
y+β −2

(1− y)(1− yβ )
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12 Eventually-periodic orbits
The previous section characterized the set of β values which have midpoint orbits of
finite length. Another interesting class is the set of eventually-periodic orbits: orbits of
infinite length, settling down to a stable, periodic cycle after an initial bout of chaotic
motion. These β values occur as the roots of a slightly different set of self-describing
polynomials, as a sum of two parts: one for the initial chaotic motion, and a second
polynomial for the cyclic motion. These can be (monotonically) paired with the rational
numbers, with infinite paths through the binary tree, and with locations on the comb
function. They naturally extend the bracket mapping from the dyadic rationals to all
rational numbers.

12.1 Bitsequence polynomials
Consider the set of all eventually-periodic bit-sequences. These consist of a leading
chaotic prefix of length L followed by a periodic orbit of length N. Such sequences can
be placed in one-to-one correspondence with the rationals, in the conventional fashion.
Select such a sequence {bk}. The cyclic condition has that bk = bk+N for all k ≥ L.
Split this into two parts: a finite length-L digit sequence dk = bk for k < L and a finite
length-N cyclic bit sequence ck = bk+L for k < N. Associated to this is a rational
number x = ∑

∞
k=0 bk2−k−1. To get it’s value, write

S (β ) =
∞

∑
k=0

bkβ
−k

=
L−1

∑
k=0

bkβ
−k +

L+N−1

∑
k=L

bkβ
−k +

L+2N−1

∑
k=L+N

bkβ
−k + · · ·

=
L−1

∑
k=0

bkβ
−k +

β N

β N −1

L+N−1

∑
k=L

bkβ
−k

=
1

β L−1

L−1

∑
k=0

dkβ
L−k−1 +

1
β L−1 (β N −1)

N−1

∑
k=0

ckβ
N−k−1

Plugging in β = 2 gives ratios of whole numbers: a rational that corresponds to this
bit-sequence.

Any given 1 ≤ β ≤ 2 generates a mid-point orbit bit-sequence. Sadly, we’ve intro-
duced too many different but equivalent notations for this. Starting with the mid-point
x = m0 = β/2, the characteristic bit-sequence is

bn = Θ

(
mn −

1
2

)
= Θ

(
T n

β

(
β

2

)
− 1

2

)
= dn

(
1
2

)
= kn

(
β

2

)
= εn

(
1
β

)
Such orbits have the self-describing property, that β = S (β ). This follows from eqn
6, as well as other identities. For the eventually-periodic orbits, S (β ) is a ratio of
polynomials. It can clearly be placed in one-to-one correspondence with the rationals.
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It is not hard to show that it has one unique real root 1 < β ≤ 2, and so these are in
one-to-one correspondence as well.

This can be related to earlier notation. Writing β −S (β ) = 0 and then multiplying
through by the denominator,

(
β

N −1
)(

β
L −

L−1

∑
k=0

dkβ
L−1−k

)
−

N−1

∑
k=0

ckβ
N−1−k = 0

This touches the earlier notation for the polynomials describing finite orbits:

p{d0···dν−1} (β ) = β
ν −

ν−1

∑
k=0

dkβ
ν−1−k

and so the eventually-periodic orbits are the roots of(
β

N −1
)

p{d0···dL−1} (β )+ p{c0···cN−1} (β )−β
N = 0

Finite-length orbits have N = 1 and c0 = 0, so that the cyclic term vanishes, and the
earlier form is recovered, after ignoring an extra factor of β −1.

Finite-length orbits can be converted to infinite-length periodic orbits simply by
setting the last bit to zero, and then repeating the bit sequence cyclically. Recall, finite
orbits always have the last bit equal to one, so this operation is always unambiguous.
Restating this explicitly: if b0b1 · · ·bν−1 is a finite-length orbit, then set L = 0 and
N = ν and ck = bk for k < ν −1 and finally cν−1 = 0. Plugging through just yields the
usual polynomial for finite orbits.

Collecting terms of the same order, write

0 = β
N+L −

N+L−1

∑
k=0

akβ
N+L−1−k

The coefficients are then

ak = dk + ck−L +δ
0
k−N−1 −dk−N

with δ the Kronecker delta. The only coefficients that can appear are in the set ak ∈
{−1,0,1,2}, and at most one coefficient can be 2; it is specifically aN−1, which can
only ever be 1 or 2. This can be best understood visually, lining up columns. For L>N,
get ak by summing the columns:

d0 · · · · · · dL−1 c0 · · · cN−1
+ 0 · · · 0 1 -d0 · · · -dL−1

a0 · · · aN · · · aN+L−1

The top row shows the prefix string and the first run of the cyclic string. The second
row shows minus the prefix string, shifted all the way to the right, establishing
alignment at the right side. Just before it is a lone 1, and then padded on the left with
zeros. The bottom row is just the sum of the two rows above it. Clearly, the coefficient
aN−1 can only ever be 1 or 2. It is exactly the same for L < N, with the bottom row
being shorter:
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d0 · · · dL−1 c0 · · · cN−1
+ 0 · · · 0 1 -d0 · · · -dL−1

a0 · · · aN · · · aN+L−1

12.2 Examples
Not all possible bit-sequences {bk} are allowed. They must be self-describing, so
that the root of β − S (β ) = 0, when iterated, generates {bk}. For orientation, some
examples are shown below.

p
q

p+q
2q m,c b0b1 · · · L N polynomial β

0 1/2 1,0 1· 1 1 β −1 = 0 1

1 1 0,1 1 0 1 β −2 = 0 2

1/2 3/4 3,0 11· 2 1 β 2 −β −1 = 0 ϕ = 1.61803 · · ·
1/3 2/3 0,2 10 0 2 above above

2/3 5/6 1,2 110 1 2 β 3 −β 2 −2β +1 = 0 1.80193773...= 2cos π

7

5/6 11/12 3,2 1110 2 2 β 4 −β 3 −2β 2 +1 = 0 1.905166167754018...

11/12 23/24 7,2 11110 3 2 β 5 −β 4 −2β 3 +1 = 0 1.954683120048208...

· · ·
1/4 5/8 5,0 101· 3 1 β 3 −β 2 −1 1.465571231876768...

1/7 4/7 0,4 100 0 3 β 3 −β 2 −1 above

4/7 11/14 1,4 1100 1 3 β 4 −β 3 −β 2 −β +1 = 0 1.722083805739041

11/14 25/28 3,4 11100 2 3 β 5 −β 4 −β 3 −2β 2 +β +1 = 0 1.87134931301491

25/28 53/56 7,4 111100 3 3 β 6 −β 5 −β 4 −2β 3 +β +1 = 0 1.939924487935805

2/7 9/14 1,2 1010 1 3 β 4 −β 3 −2β +1 = 0 1.55897987798175

9/14 23/28 3,2 11010 2 3 β 5 −β 4 −β 3 −β 2 +1 = 0 1.77847961614338

4/5 9/10 1,12 11100 1 4 β 5 −β 4 −β 3 −β 2 −β +1 = 0 1.88320350591352

The rationals in the first column are from the set 0
1 ≤ p

q ≤ 1
1 . The β bit-sequences

always have b0 = 1 and thus, the second column shows S (2) = (p+q)/2q ≥ 1/2. The
third column m,c shows the prefix and the cyclic part as integers. The fourth column
shows the actual bitsequence. An overline is drawn over the repeating digits. If there
is one repeating digit, and it is zero, it is written as · so as to keep things a bit more
readable. The prefix must always start with a 1, and so the integer m is unique. The
length of the prefix is in the L column. The cycle might have leading zeros, and so
specifying c is not enough; a cycle length is required, given in the N column. The
corresponding polynomial and it’s root are given in the last two columns.
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Notes:

• The sequence 110 is described in OEIS A160389.

• The sequence 1010 is obviously not allowed, as it is the same as 10.

• The sequence 10010 = 1001 is not allowed. In the unreduced form, replacing 10
by 110 gives 10010 7→ 10011 = 19, which wasn’t allowed as a finite orbit.

• The sequence 10110 is not allowed; it reduces to a finite form 10110 7→ 10111 =
23 that is a disallowed finite orbit.

• These last two observations are a coincidence, and do not hold in the general
case. There are good periodic orbits that have disallowed finite versions, and
vice-versa.

• The sequence 10100 is not allowed, because it is reducible: 10100 = 1010.

• 4/7 gives 1100 seems to be OEIS A289917 which is
(

1+
√

13+
√

2
√

13−2
)
/4.

• 4/5 gives 11100 seems to be OEIS A289915 which is
(

1+
√

2+
√

2
√

2−1
)
/2.

The polynomial factors as β 5−β 4−β 3−β 2−β +1=(β +1)
(
β 4 −2β 3 +β 2 −2β +1

)
.

• Rationals with prefix m = 0 correspond to the finite orbits.

• It seems the prefix m = 2L−1 never occurs, when L > 1.

• The prefix is often but not always odd. Counterexamples include 7/12 = 11001
and 13/20 = 1101001.

• The first time that m = 5 occurs is for 9/28 = 101010.

Not all rationals give valid bit-sequences. The set of valid rationals are exactly the ones
that are in the set Q∩ θ where θ is the infinite comb, given in eqn 37, and depicted
visually in figure 29. The comb is extremely fractal, and working directly with Q∩θ

would be a chore. Fortunately, the bracket map saves the day: it is a map of the entire
unit interval onto θ . The bracket map, shown in figure 31, maps rationals to rationals;
it provides a map Q∩ [0,1]→ Q∩θ . Thus, it provides a better, though more indirect
way, of describing the ultimately-periodic orbits. Some examples are reviewed in the
section after next.

12.3 Rational to periodic binary
As a practical matter, it is computationally useful to convert a given fraction p/q into
the binary prefix m, it’s length L, and the cyclic part c, and its length N. This is not
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hard, but also not entirely easy, and so is presented here. Write

p+q
2q

=
m
2L +

1
2L

( c
2N +

c
22N +

c
23N + · · ·

)
1
2L

(
m+

c
2N

(
1+

1
2N +

1
22N + · · ·

))
1
2L

(
m+

c
2N −1

)
1
2L ·

m
(
2N −1

)
+ c

2N −1
In the last line, both numerator and denominator are integers. This allows the following
algorithm:

1. Find gcd(p+q,2q) and so reduce to lowest terms a/b = (p+q)/2q.

2. Factor b = 2Lb′ to obtain L ≥ 0.

3. Solve
(
2N −1

)
mod b′ = 0 for the smallest positive N ≥ 1.

4. Define r =
(
2N −1

)
a/b′.

5. Solve (r− c) mod
(
2N −1

)
= 0 for the smallest c such that 0 ≤ c < 2N .

6. Define m = (r− c)/
(
2N −1

)
.

This provides all four integers m,L,c,N that define the cyclic expansion.

12.4 The Bracket Map
The bracketing relationship provided a mapping to the dyadic rationals, via moves on
the binary tree. What do ultimately-periodic moves correspond to, on that tree?

The left and right moves L,R on the valid-index binary tree were L : (ℓ Z⇒ f ⇐ \ ρ) 7→
(ℓ Z⇒ 2 f ⇐ \ f ) and R : (ℓ Z⇒ f ⇐ \ ρ) 7→ ( f Z⇒ Λ( f )⇐\ ρ). (The symbol R is used in
place of R in this section, for ease of typography. They are isomorphic.) Consider
starting at ∞ Z⇒ 1 ⇐ \ 0 and applying a sequence of alternating left and right moves.
This is shown in the table below:

position move bracket β

1/2 - ∞ Z⇒ 1 ⇐ \ 0 1.61803398...
1/4 L ∞ Z⇒ 2 ⇐ \ 1 1.46557123...
3/8 LR 2 Z⇒ 10 ⇐\ 1 1.57014731...
5/16 LRL 2 Z⇒ 20 ⇐ \ 10 1.53849659...

11/32 LRLR 20 Z⇒ 82 ⇐\ 10 1.56175206...
21/64 LRLRL 20 Z⇒ 164 ⇐ \ 82 1.55392112...

43/128 LRLRLR 164 Z⇒ 658 ⇐ \ 82 1.55970265...
85/256 LRLRLRL 164 Z⇒ 1316 ⇐ \ 658 1.55767530...
171/512 LRLRLRLR 1316 Z⇒ 5266 ⇐\ 658 1.55917021...

1/3 LR — 1.55897978...
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The column labeled “position” is the location in the dyadic tree. By convention,
1/2 is at the top, and 1/4 lies to the left, and 3/4 lies to the right. The column labeled
“move” consists of the sequence of left-right moves to get to a given tree position. For
n moves, encoded as a binary integer m, the corresponding position in the dyadic tree
is (2m+1)/2n. The bracket is likewise a position in the valid-index binary tree. The
string of moves to get to that location are written in reverse applicative order, so that
the first letter in the string is the first move. If the moves are treated as functions to be
composed and applied, then the string needs to be reversed to get the applicative order.
The beta is the beta value at the center of that bracket. Based on the beta value, we
conclude that G : 1/3 7→ 2/7.

A second example helps cement the idea.

position move bracket β

1/2 - ∞ Z⇒ 1 ⇐\ 0 1.61803398...
1/4 L ∞ Z⇒ 2 ⇐\ 1 1.46557123...
1/8 LL ∞ Z⇒ 4 ⇐\ 2 1.38027756...

3/16 LLR 4 Z⇒ 36 ⇐ \ 2 1.44326879...
5/32 LLRL 4 Z⇒ 72 ⇐\ 36 1.42705896...
11/64 LLRLR 72 Z⇒ 580 ⇐ \ 36 1.43949911...

21/128 LLRLRL 72 Z⇒ 1160 ⇐ \ 580 1.43591015...
43/256 LLRLRLR 1160 Z⇒ 9284 ⇐ \ 580 1.43866733...
85/512 LLRLRLRL 1160 Z⇒ 18568 ⇐ \ 9284 1.43784133...

1/6 LLR — 1.43841656...

Based on the convergent, we conclude that G : 1/6 7→ 2/15, deduced below. In this
case, 1/6 /∈ θ and so the raw fraction 1/6 does not generate a self-describing orbit.
But 2/15 is self-describing. Of course, that is the entire intent of the bracket map.
Originally formulated as the good-index map G : N→ Ψ which maps natural numbers
to brackets, the extension G is the “good rational” map G : Q → Q∩ θ , which maps
rationals to those that are self-describing. This is the same map as visualized in figure
31.

12.5 Bracketing Examples
A curated collection of examples of rationals passed through the bracketing function
is given below. It serves mostly to give a sense of the patterns that develop, as well as
counterexamples that defy simple patterns.

a
b Ψ moves p

q = G a
b id orbit β

0/1 -1 ε 0/1 y 1· 1

1/2n − ε ≈ RL · · ·LR 1/
(
2n+1 −1

)
−δ - ≈ 10 · · ·01

1/2n 2n−1 RL · · ·LR 1/2n y 10 · · ·01
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a
b Ψ moves p

q = G a
b id orbit β

1/8− ε ≈ RLLLR 1/15−δ - ≈ 10001 <1.380277

1/8 4 RLL 1/8 y 1001 1.38027756

1/7 RLLR 4/31 - 100100 1.42109608

1/6 RLLR 2/15 - 10010 1.43841656

1/5 RLLRR 12/85 - 100100100 1.45394278

1/4− ε ≈ RLLR 1/7−δ - ≈ 1001 <1.4655712

1/4 2 RL 1/4 y 101· 1.46557123

2/7 RLRL 4/15 - 10100 1.52626195

1/3 RLR 2/7 - 1010 1.55897987

2/5 RLRRL 20/63 - 1010100 1.58925391

3/7 RLRR 10/31 - 101010 1.60022189

1/2− ε ≈ RLR 1/3−δ - ≈ 101 < 1.61803 · · ·
1/2 1 R 1/2 y 11· ϕ = 1.61803 · · ·

6/11 8900/16383 - 1.69971346

5/9 RRLLLRR 40/73 - 1.70348856

4/7 RRLL 4/7 y 1100 1.72208380

3/5 RRLLR 25/42 - 11001100 1.74720863

9/14 RRLRL 9/14 y 11010 1.77847961

2/3 RRL 2/3 y 110 1.80193773

7/10 RRLRRL 43/62 - 1.82000973

5/7 RRLR 7/10 - 110110 1.82651577

3/4 3 RR 3/4 y 111· 1.83928675

7/9 RRRLLLR 227/292 - 1.86625406

11/14 RRRLL 11/14 y 11100 1.87134931

4/5 RRRLL 4/5 y 11100 1.88320350

5/6 RRRL 5/6 y 1110 1.90516616

6/7 RRRL 6/7 y 1110 1.92128960

8/9 RRRRLLL 8/9 y 1111000 1.93762945

25/28 RRRRLL 25/28 y 111100 1.93992448

9/10 RRRRLL 9/10 y 111100 1.94470383

10/11 10/11 y 1.94988340

11/12 RRRRL 11/12 y 11110 1.95468312

1/1 0 R 1/1 y 1 2

237



Table legend.

• The first column shows selected interesting rationals. Every possible rational is
allowed here, and will generate an ultimately-periodic orbit.

• The second column shows the corresponding index Ψ; only seven are shown, for
the finite orbits that correspond to the dyadic rationals; all others have an infinite
limit.

• The third column shows the bracket moves generated by that rational. These
are obtained as the binary expansion of the fraction a/b, or, more properly, the
expansion for (a+b)/2b. Thus, the first move is always R, to arrive from the far
left to the center of the tree. The expansions for 6/11 and 10/11 were left blank;
these are pointlessly long strings that would have cluttered the table.

• The fourth column shows the result of the “good rational” map G : Q→ Q∩θ

that takes G : a
b 7→ p

q . Thus, by definition, p/q ∈ θ . The fractions are those
obtained by extending the “good index” map G : N → Ψ to it’s limit points. A
graph of the fourth column, relative to the first, is given in figure 32. Although
that figure was prepared for the finite orbits, it is exactly the same for the periodic
orbits.

• Some of the discontinuities visible in 32 are shown here, in the rows with δ ,ε ≪
1 in them. For example, the top of the tree is 1/2, which has a finite orbit 10. It
can also be written as an infinite cyclic orbit 101 = 1/3 and these two distinct
binary strings are mapped to distinct fractions; thus, the discontinuities. Such a
discontinuity appears at every finite orbit.

• Notable rows are 6/11, which has a horribly large denominator; and 7/9 is the
runner-up. The large denominator is due to leader heights that are greater than
one, that are encountered during the expansion. Compare rows 7/9 to 8/9. Both
have long move strings, but G(7/9) = 7/9. Similarly, 6/11 and 10/11 have intol-
erably long move strings, but G(10/11) = 10/11.

• The fifth column has a ’y’ in it, whenever G(a/b) = a/b; when the first and fifth
column are equal. Note that most ’y”s occur at the end of the table, rather than
at the beginning.

• The sixth column shows the bitsequence b0b1 · · · for the binary expansion of p/q
. Some rows are blank; these rows had horribly long expansions that provide no
intuition.

• The seventh and rightmost column shows the corresponding β value for the orbit
in the previous column.

Perhaps most notable is that the good map G maps rationals to rationals. Reassuringly,
it extends from the dyadic rationals, to all rationals. Formal lemmas and proofs follow
in a later section.
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13 Formal Work
Theorems, lemmas, proofs. A number of observations, claims and assumptions have
been made. They seem “obviously true” from numerical work, but are lacking a formal
proof. These are sketched below. As sketches, this chapter is still quite informal; the
difference is that it uses a more sophisticated vocabulary to say things in a more abstract
manner.

• Theorem: The finite orbits are dense in 1 ≤ β ≤ 2. Proof: Provided by the
bracketing relation, which states that between any two endpoints, there’s another
orbit strictly in the middle. We even have more: the estimate ν1/ν from the limit
diagram, showing how they don’t want to accumulate near beta=1.

• Lemma: The bracketed roots are always in strict ascending order, with rℓ < r f <
rρ .

• Lemma: The valid-index map G is a bijection. Proof: Leadership function is
monotonically increasing.

• Theorem: The good map G always maps rationals to rationals. More precisely,
those rationals are always inside of θ so that G : QI → θ ∩Q is a bijection,
except at the dyadics, where we have a countable freedom of finite orbits and
one infinite-periodic orbit to choose from.

• Theorem: G : [0,1]→ θ is a bijection for all reals [0,1]⊂ R. That is, the closure
to reals works as expected. This follows because the roots form a countable
dense subset, the reals are separable, and the function is continuous.

• Proper diligence requires distinguishing BQ from BR and also θQ from θR.

The remainder of this section consists of fragments of proofs of the above theorems
and lemmas. If these were stitched together properly, whole proofs should emerge. As
it is, its more an outline or sketch.

13.1 The Rational Comb
The dyadic comb, of figure 29, shows where valid finite orbits can occur. It’s limit to
infinite rank gives the infinite comb θ of eqn 37. The only valid rationals, that is, those
giving self-describing orbits, are those that belong to Q∩θ .

This can be understood as a limiting procedure. Every rational can be approxi-
mated by a dyadic rational; each set is dense in the other. The dyadic rationals are
finite walks down the binary tree; the non-dyadic rationals are infinite walks. The in-
finite comb corresponds to the trimmed tree, described earlier. The trimming always
maintains branches of unbounded length. These have a limit; in the limit, some of
these will correspond to rationals. These are exactly the rationals that correspond to
the ultimately-periodic orbits. The correspondence goes in both directions: given an
infinite path down the tree, it is sufficient to truncate it to be of finite length. By con-
struction, the truncated path corresponds to a valid dyadic rational. To recap: going
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in one direction, there is a sequence of finite orbits that converge, in the limit, onto
an eventually-periodic orbit. Conversely, given such an orbit, every truncated version
thereof is valid.

13.2 Closures
The ultimately-periodic orbits live inside the closure B ⊂ B. Write C ⊂ B for the
cyclic (ultimately periodic) orbits; these are infinite-length strings describing moves
down the infinite binary tree. As already noted, C∩B ⊂ B; that is, every infinite-
length cyclic orbit, when truncated to finite length, is a valid finite orbit. The closure
B consists of all self-describing bit-strings obtained as solutions to β = S (β ) where
S (β ) = ∑

∞
k=0 bkβ−k. The cyclic orbits are just a special case: C ⊂ B. There are

presumably many more, uncountably many chaotic orbits in B.
Just a little bit more machinery is needed. Let 2ω be Cantor space, the space of

infinitely-long binary strings. Let χ : 2ω → [0,1] be the canonical mapping of Cantor
space to the unit interval: χ : (b0b1 · · ·) 7→∑k bk2−k−1. Note that this mapping manages
to miss all the dyadic rationals, as these correspond to finite strings, of which there
aren’t any in the Cantor space. Let 2<ω = 2∗ be the set of finite-length binary strings,
and allow the symbol χ to perform double-duty, by writing χ : 2∗ → D to map finite
strings to dyadics. These binary strings can also be interpreted as strings in the symbols
L,R, so that they are moves on the tree. Write ι : 2∗ → B that maps the empty string to
the root of the tree, and likewise ι : 2ω → B that maps infinite strings to the leaves of
the infinite tree.

The comb was a subset of the unit interval: θ ⊂ [0,1]. The claim is that θ = χιB.
The mapping is onto, but not one-to-one: The finite orbits all have corresponding cyclic
orbits, all of which are distinct elements in B but map to the (finite-orbit) polynomial,
and thus the same root.

The good-index function provided a bijection B= ηGη−1B between the trimmed
and untrimmed finite, unbounded trees. The claim is that this can be extended to a
bijection B = GB. This requires a short detour into topology. The standard (weak)
topology on Cantor space is the product topology. The base for the topology may
be taken as the set of all finite strings, followed by an infinite number of don’t-care
markers. These are the open sets; the full topology is the finite intersection and infinite
union of the open sets in this base.

Every set in the base of the topology is represented by a finite string. The function
η−1 maps this to an integer. The function G is defined on all integers; it returns an
integer, which is mapped by η to a finite string and thus an open set. To conclude,
ηGη−1 maps open sets to open sets, and it is defined on every open set in the topology.
Thus, it is safe to write G = ηGη−1, as it is defined everywhere; all of B is in it’s
domain. The range of G can be taken to be the definition of the closure B. This has
several benefits: it avoids having to make funny arguments that pass through the reals
via the comb, and it also makes clear that G is a bijection. Note G is not continuous, in
the context that B⊂ B, since G−1 is defined almost nowhere on B.

The points rn are dense in the interval [1,2]. Within each rank ν they are monotoni-
cally increasing. The bracketing relation guarantees that, for all rn in the subtree, these
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are all contained within the endpoints of the bracket, and that they are always totally
ordered, by the natural tree-ordering. The notion of open sets is compatible. Given
a basic open set in B, the function ρ = r ◦G ◦η−1 maps it to an open set U ⊂ [1,2].
Claim that the inverse map also maps open sets to open sets, and thus ρ is continuous.
This is established as follows. Since the rn are dense in the interval [1,2], any open set
U ⊂ [1,2] can be written as a countable union of brackets. The function ρ−1 is defined
on all brackets, and by bracketing, it is defined on all U ⊂ [1,2] and by bracketing
ρ−1U is an open set in the product topology on B.

The goal is to extend this reasoning to ρ : D→ [1,2], given by ρ = ρ ◦η ◦ δ−1 =
r ◦G ◦ δ−1 so as to obtain a continuous, monotonic function ρ : [0,1] → [1,2] on the
unit interval. And we are done, more or less.

The mapping χ maps the basic open sets of B to open subintervals of the unit
interval; more precisely, to subintervals with dyadics at each end. These are precisely
the sets I (m,ν) defined in eqn 36. They allowed the infinite comb to be built up from
unbounded-length but finite strings in B.

The base of the product topology was mapped to open intervals on the real-number
line; and so ρ is continuous on the reals. This can also be seen in a different way. The
standard measure µ on the reals says that µI (m,ν) = 22−ν . The function G is built
from left and right moves. The left moves bump the rank by one, and so always map
to sets that are exactly half the size on the real number line. The right moves are given
by the leadership function: ΛΨν ⊂

⋃
∞
h=0 Ψν+1+h for each rank ν . The resulting sets

are (at a minimum) half the size, and possibly larger, as the union of additional small
intervals. This allows a conventional delta-epsilon proof of continuity to go forward:
for each epsilon, one can choose a rank ν where the basis sets I (m,ν) are smaller than
epsilon. The function G maps them to other open sets that are strictly smaller. Strictly,
because the height of a leader is always a finite number; the union is written as a union
over all possible heights, but the union is always finite.

13.3 Proof that roots are correctly bounded
Theorem: The bracket relationship gives roots with rℓ < r f < rρ being strict inequali-
ties.

Proof: Recursion starts with ∞ Z⇒ 1 ⇐\ 0. The bracket moves are

L : (ℓ Z⇒ f ⇐\ ρ) 7→ (ℓ Z⇒ 2 f ⇐ \ f )
R : (ℓ Z⇒ f ⇐ \ ρ) 7→ ( f Z⇒ Λ( f )⇐ \ ρ)

So p1 = β 2 −β −1 and p∞ = p1/0 = β −1 and p1/∞ = β −2. Must show that bracket
bounds are respected in all four cases. The proofs depend on having p′n (β )> 0 for all
1 ≤ β ≤ 2.

Case 1: Show that r2 f < r f . Proof: The L move gives p2 f = β
(

p f +1
)
− 1. So

1= r2 f
(

p f
(
r2 f
)
+1
)

but since r2 f > 1, must have p f
(
r2 f
)
< 0 and since p′n > 0,

conclude that r2 f < r f .

Case 2: Show that rℓ < r2 f . Proof: For any ℓ Z⇒ f ⇐\ ρ it is always the case that ρ is in
the tree rooted by ℓ. This can be seen by examining the two possibilities arising
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from ∞ Z⇒ 1 ⇐ \ 0 and then keeping in mind all trees are isomorphic. The path
to ρ from it’s root ℓ is ρ = LnRℓ for some n ≥ 0. Thus p f = β n+1 pℓ−1 and so
p2 f = β n+2 pl −1. But pℓ (rℓ) = 0 and so p2 f (rℓ) = −1 < 0. Since p′n (β ) > 0,
conclude that rℓ < r2 f .

Case 3: Show that r f < rΛ( f ). Proof: Proceeds as a modified proof of case 1. For
height zero, Λ( f ) = 2 f +1 so pΛ( f ) = β p f −1. Thus, 1 = rΛ( f )p f

(
rΛ( f )

)
so 0 <

p f
(
rΛ( f )

)
< 1 and since p′n > 0, conclude that r f < rΛ( f ). What about positive

heights? For height h, the moves are LhR and so pΛ( f ) = β h+1 p f − 1. Again,

1 =
(
rΛ( f )

)h+1 p f
(
rΛ( f )

)
and again 0 < p f

(
rΛ( f )

)
and so again r f < rΛ( f ).

Case 4: Show that rΛ( f ) < rρ . Proof: This proceeds as a modified version of case 2,
with the role of left and right reversed. In this case, ρ roots a tree, and the path
to f is f = RnLρ for some n ≥ 0. For n = 0, one has p f = β

(
pρ +1

)
− 1 and

so pΛ( f ) = β h+1
(

p f
)
−1. Expanding, pΛ( f ) = β h+2 pρ +β h+2 (β −1)−1, and

since pρ

(
rρ

)
= 0, one concludes that pΛ( f )

(
rρ

)
> 0 and therefore rΛ( f ) < rρ .

For n > 0, the proof proceeds the same way, with pΛ( f ) = apρ + b for some
positive numbers a,b. Thus, pΛ( f )

(
rρ

)
= b > 0 and again rΛ( f ) < rρ .

To conclude: the roots are ordered as rℓ < r f < rρ with strict inequalities holding.
QED.

13.4 Conclusion
The general sketch of closures seems to be complete. It feels a bit rambling. Adding
more detail to it feels like it would just clutter up the arguments even more. I don’t
think there’s anything difficult or challenging in there; it feels all very straight-forward.

The proof of bracketing seems like it should have been easy, but is currently in-
complete.
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14 The involution Jimm
The rollover of the odometer appears to be given by an involution given the name of
“Jimm” by Uludağ and Ayral.[45] This is an involutive outer automorphism of the
group PGL(2,Z) given by Joan Dyer in 1978.

This is another run-length encoding trick.

15 Galois extensions
The β -golden polynomials defined in the last section form a curious class. One can
now embark down a path of arithmetic. For each such polynomial (or analytic series,
as the case may be) and given some field K (for example, say, the rationals Q), one can
construct the Galois extension K (β ) : K.

For the case of β periodic, there is just one real root ϕn, and it is not rational.
This root is an algebraic element of the polynomial ring Q [β ] (obviously), and so it
generates the (simple) field extension Q(ϕn). The order of the polynomial pn (β ) is
⌊logn⌋+ 1 and so this is obviously the transcendence degree of the field extension.
The elements ϕm

n for 0 ≤ m ≤ ⌊logn⌋ provide the basis.
For the case of β aperiodic, the vector space is clearly infinite-dimensional.
A few questions:

• What is the automorphism group?

• What is the field of fractions?
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16 Islands of Stability as Arnold Tongues
The classical Feigenbaum bifurcation diagram, shown in figure 5, manifests two dis-
tinct behaviors: the “islands of stability”, in which there are periodic orbits, and the
“chaotic regions”. These regions alternate and interleave as a parameter λ appearing
in the iterated equation λx(1− x) is swept through a range of values. By contrast, the
equivalent diagram for the beta-map, shown in figure 2, does not seem to have regions
of stability. This is only an illusion: they are there, they are only infinitely thin. This
chapter focuses on how to crowbar them open, to finite size.

In the previous chapters, it was demonstrated that there is a countable set of β

values, dense in the range 1 ≤ β ≤ 2, for which orbits are finite and terminate after a
fixed number of iterations. Alternately, they can be made periodic, simply by changing
a less-than sign to a less-than-or-equals sign. The β values for which orbits are periodic
can be placed in correspondence with the periodic orbits of the logistic map; the β

values for which orbits are chaotic correspond to the chaotic orbits of the logistic map.
The open problem is to demonstrate this correspondence explicitly. This problem is
not tackled here; it is just brushed up against.

The circle map xn+1 = xn + θ +K sin2πxn provides one possible mechanism for
taking a set of measure zero, and crowbaring it open to a set of finite size. For K = 0,
this is just the rotation map xn+1 = xn + θ which has only periodic orbits, when θ

is rational, and chaotic orbits, when θ is not rational. As one sweeps θ through a
range, the subset of periodic orbits is countable, and is a set of measure zero: thus, the
rotation map can be said to be chaotic for almost all θ . Setting K to a non-zero value
expands the regions of periodic orbits to finite size, termed Arnold tongues. These are
the mode-locking regions that are generically visible in driven oscillator systems. The
perturbation by the kick K displaces what would have been chaotic orbits into mode-
locked regions. For small K, this perturbation is soft, in that one might say “it shouldn’t
change things much.” But even a whisper of a miniscule K is enough to convert the set
of periodic orbits from a measure of zero to a finite measure.

Another possibility is to just crowbar open the periodic regions with a “hard” per-
turbation, localized at a point. Take the natural saw-tooth shape of the β -map, widen
the middle, and insert a slanting downward line, to create a zig-zag. That is, connect
the two endpoints in the middle of the beta shift, “widening” it so that it has a finite, not
infinite slope, thereby converting the iterated function from a discontinuous to a con-
tinuous one. This can be constructed directly: given some “small”, real ε > 0, define
the piecewise-linear ε-generalization of the map 4 as

Tβ ,ε(x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −β
( 1

4 − ε
)

w for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(45)

where w is just a handy notation for a downward sloping line:

w =
2x−1

2ε

Observe that w = 1 when x = 1
2 − ε and that w = −1 when x = 1

2 + ε so that w just
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smoothly interpolates between +1 and -1 over the middle interval. The additional fac-
tors of β

4 −β
( 1

4 − ε
)

w just serves to insert the downward slope smack into the middle,
so that the endpoints join up. The results is the zig-zag map, illustrated in the figure
below

In the limit of ε → 0, one regains the earlier beta shift: limε→0 Tβ ,ε = Tβ , as the
slope of the middle bit becomes infinite. The middle segment is a straight line; it
introduces another folding segment into the map. This segment introduces a critical
point only when ε is sufficiently large, and β is sufficiently small, so that its slope is
less than 45 degrees (is greater than -1). When this occurs, a fixed point appears at
x = 1/2. A sequence of images for finite ε are shown in figure 45.

The appearance of islands of stability in the Feigenbaum attractor is due to the
presence of a fixed point at any parameter value. In order to “surgically add” islands
of stability to the beta transform, the middle segment interpolation must also have a
critical point at “any” value of ε . To achieve this, consider the curve

Dβ ,ε(x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −β
( 1

4 − ε
)

g(w) for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(46)

where the straight line has been replaced by a soft shoulder

g(w) = 1−2cos
π

4
(1+w)

and w is the same as before. This is scaled so that its a drop-in replacement for the
straight line: g

( 1
2 − ε

)
= 1 and g

( 1
2 + ε

)
= −1. A cosine was used to create this soft

shoulder, but a parabola would have done just as well. It is illustrated above, with the
label “soft map”.

This map also interpolates between the left and right arms of the beta transform,
forming a single continues curve. The curve is smooth and rounded near 1

2 − ε > x,
having a slope of zero as x approaches 1

2 − ε from above. This introduces a critical
point near 1

2 − ε . Notice that there is a hard corner at 1
2 + ε . The interpolation is NOT

an S-curve! A sequence of images for finite ε are shown in figure 46.
Two more variant maps can be considered. Both replace the center piece with
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Figure 45: Z-shaped Map

This illustrates a sequence of iterated maps, obtained from eqn 45. Shown are ε =
0.01, 0.02, 0.04 in the first row, 0.06, 0.08, 0.10 in the second row and 0.12, 0.14,
0.15 in the third row. The image for ε = 0 is, of course, figure 2. The parameter β

runs from 1 at the bottom to 2 at the top. Thus, a horizontal slice through the image
depicts the invariant measure of the iterated map, black for where the measure is zero,
and red where the measure is largest. The sharp corner at the lower-left is located
β = (1+2ε)/(1−2ε) and x = ε (1+2ε)/(1−2ε). A yellow horizontal and vertical
line in the last image indicate the location of this corner.
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Figure 46: Critical-Z map

This illustrates a sequence of iterated maps, obtained from eqn 46. The sequence of
depicted ε values are the same as in figure 45. The top row shows ε = 0.01, 0.02, 0.04,
with 0.06, 0.08, 0.10 in the second row and 0.12, 0.14, 0.15 in the bottom row. The
image for ε = 0 is, of course, figure 2. The parameter β runs from 1 at the bottom to 2
at the top. Working from bottom to top, one can see islands of stability forming in the
ε = 0.02 and 0.04 images. The largest island, one third from the top, corresponds to
β = ϕ = 1.618 · · · the golden ratio. Moving downwards, the other prominent islands
correspond to the “trouble spots” 101, 1001 and 10001, which are the Narayana’s Cows
number, an unnamed number, and the Silver Ratio, at β = 1.4655 · · · and so on. Mov-
ing upwards, one can see a faint island at the tribonacci number. Due to the general
asymmetry of the map, these islands quickly shift away from these limiting values.
For example, the primary island appears to start near β = δ +(2−δ )(ϕ −1), where
δ = (1+2ε)/(1−2ε). This location is indicated by a horizontal yellow line in the
images in the right column. The other islands shift away in a more complicated fash-
ion.
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symmetrical sinuous S-shaped curves, but in different ways. Consider

Sβ ,ε,σ (x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

sin π

2 w for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(47)

and

Hβ ,ε,p,σ (x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

sgn
(
x− 1

2

)
|w|p for 1

2 − ε ≤ x < 1
2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1
(48)

The Sβ ,ε(x) replaces the central segment with a softly-rounded segment, containing
two critical points: near 1

2 − ε and near 1
2 + ε , where the curve flattens out to a zero

slope. When σ = +1, the map as a whole is continuous. When σ = −1, the map
consists of three discontinuous pieces. Different values are explored in figure 47.

The Hβ ,ε,p,σ (x) replaces the central segment with a segment that has a kink in the
middle, when p > 1. Note that Hβ ,ε,1,1(x) = Tβ ,ε(x). Here, sgnx is the sign of x. The
general shape of Hβ ,ε,p,σ (x) is shown above, labeled as the “kink map”. The location
of the kink in H is always centered; an off-center kink, as depicted in the figure, is
explored below. The bifurcation diagrams for H are illustrated in figure 48.

To summarize: the “trouble spots” aren’t “just some periodic orbits” at certain
values of β : they are more “fundamental” than that: they indicate the regions where
(“phase-locked”) periodic orbits can be made to appear. And conversely: bifurcations
can only appear here, and not elsewhere! The last sequence of images, shown in figure
48 indicate that the islands of stability need NOT consist of the period-doubling se-
quences seen in the Feigenbaum map. This is made explicit in figure 49, which shows
a zoom by a factor of thirty.

Another interesting visualization is a Poincaré recurrence plot. The islands of sta-
bility should manifest as Arnold tongues[46]. These are shown in figures 50 and 51.

To intuitively understand the location of the islands (the location of the Arnold
tongues), its easiest to examine a map with a kink in it, whose location is adjustable.

Hβ ,ε,α,σ (x) =


βx for 0 ≤ x < 1

2 − ε

β

4 −σβ
( 1

4 − ε
)

hα,p for 1
2 − ε ≤ x < 1

2 + ε

β
(
x− 1

2

)
for 1

2 + ε ≤ x ≤ 1

with

hα,p (x) =

{
α +(1−α) |w|p for x < 1

2
α − (1+α) |w|p for 1

2 ≤ x

As before, hα,p (x) is designed to interpolate appropriately, so that hα,p
( 1

2 − ε
)
= 1 and

hα,p
( 1

2 + ε
)
=−1. The location of the kink is now adjustable: hα,p

( 1
2

)
= α . Iterating

on this map results in figures that are generically similar to those of figure 48, except
that this time, the location of the islands is controllable by the parameter α . Roughly,
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Figure 47: Interpolating Sine Map

This illustrates a sequence of iterated maps, obtained from eqn 47. The sequence in the
upper row shows ε = 0.04, 0.10 and 0.15; with σ = +1. The upper row is much like
the sequence shown in figure 46, except that its made sinuous, thanks to symmetrical
S-shape. The middle row shows the same ε values, but for σ = −1. The bottom
row shows eqn 48 with p = 1 and σ = −1; thus, because p = 1 gives a straight-line
segment in the middle, this bottom row is directly comparable to the zig-zap map. It
should make clear that the islands appear in the middle row due to critical points in the
S-curve, and not due to the tripartite map. The lower right diagram exhibits islands,
but only because the middle segment has a slope of less than 45 degrees, resulting in
a critical point at the middle of the map. As usual, the parameter β runs from 1 at the
bottom to 2 at the top.
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Figure 48: Interpolating Kink Map

This illustrates a sequence of iterated maps, obtained from eqn 48. All eight images
are held at ε = 0.04. The top row has σ =+1 (and thus the map is continuous) while
the bottom row has σ = −1 (and thus the map has three disconnected branches. Left
to right depicts the values p = 2,3,4,5. As usual, the parameter β runs from 1 at the
bottom to 2 at the top. In all cases, islands appear, and numerous common features are
evident. Perhaps most interesting is that the islands do NOT contain period-doubling
sequences. The primary sequence of islands, starting from the central largest, proceed-
ing downwards, are located the inverse powers of two, viz at β = k

√
2. Why are the

islands located at inverse powers of two, instead or, for example, the golden means?
The short answer: it depends on the location of the kink in the map, as explored in the
main text.
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Figure 49: No Period Doubling

This figure is a zoom, confirming a lack of period doubling in the map Hβ ,ε,p,σ (x) of
eqn 48. The explored region is 0 ≤ x ≤ 1, viz no zoom in the horizontal direction.
Vertically, the image is centered on β = 1.45, having a total height of ∆β = 0.015625.
This uses the quintic kink, so p = 5 and σ = +1, making the the continuous variant.
The value of ε = 0.04 makes this directly comparable to other images.
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Figure 50: Poincaré recurrence

The above visualize the Poincaré recurrence times for the map Dβ ,ε(x) of eqn 46 on
the left, and the map Sβ ,ε,1(x) of eqn 47 on the right. In both cases, the parameter
β runs from 1 to 2, left to right. The parameter ε runs from 0 to 0.2, bottom to top.
The Poincaré recurrence time is obtained by iterating on the maps, and then counting
how many iterations it takes to get near an earlier point. The color coding is such that
yellow/red indicates large recurrence times; green is intermediate time, blue a short
time, and black corresponds to n less than 3 or 4 or so. The vertical black spikes
are the Arnold tongues; they correspond to parameter regions which lie in an island
of stability. That is, the recurrence time is low, precisely because the the point x is
bouncing between a discrete set of values. The yellow/red regions correspond to chaos,
where the iterate x is bouncing between all possible values. The largest right-most
spike is located at β = ϕ = 1.618 · · · , with the sequence of spikes to the left located
at the other primary golden means (viz, 1.3803 · · · and the silver mean1.3247 · · · and
so on). As noted earlier, the general curve of that spike appears to follow β = δ +
(2−δ )(ϕ −1), where δ = (1+2ε)/(1−2ε). The dramatic swallow-tail shapes in
the right-hand image are identical to those that appear in the classic iterated circle
map.[46]
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Figure 51: Arnold Tongues

The above visualize the Poincaré recurrence times for the map Hβ ,ε,p,σ (x) of eqn 48.
The parameter β runs from 1 to 2, left to right. The parameter ε runs from 0 to 0.2, bot-
tom to top. The power p is held fixed at p = 5. The left image shows σ =-1; the right
shows σ = +1. The Poincaré recurrence time is obtained by iterating on Hβ ,ε,p,σ (x)

and counting how many iterations it takes until
∣∣∣x−Hn

β ,ε,p,σ (x)
∣∣∣ < 0.009. The shapes

depicted are not sensitive to the recurrence delta 0.009; this value is chosen primarily to
make the colors prettier. The color coding is such that yellow/red indicates large recur-
rence times n; green is intermediate time, blue a short time, and black corresponds to n
less than 3 or 4 or so. The vertical blue spikes are the Arnold tongues; they correspond
to parameter regions which lie in an island of stability. That is, the recurrence time is
low, precisely because the the point x is bouncing between a discrete set of values. The
yellow/red regions correspond to chaos, where the iterate x is bouncing between all
possible values. The central spike is located at β =

√
2 with the sequence of spikes to

the left located at k
√

2 for increasing k. In that sense, the large black region dominating
the right side of the figures corresponds to β = 2. These correspond to the black bands
in figure 48.
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to first order, the primary series of islands are located at k
√

2/(1−α); as before, these
islands do not allow period-doubling to take place.

To get islands with period doubling, one needs to recreate the “soft shoulder” of
eqn 46, but at a variable location.

Thus, the above presents a general surgical technique for controlling both the gen-
eral form of the chaotic regions, the location of the islands of stability, and what appears
within the islands.

Conjectures are fun! The above arguments should be sufficient to fully demon-
strate that the circle map, which is well-known to exhibit phase locking regions called
Arnold tongues, is topologically conjugate to the fattened beta shift Tβ ,ε . Or some-
thing like that. In a certain sense, this can be argued to be a “complete” solution, via
topological conjugacy, of the tent map, the logistic map and the circle map. This is a
worthwhile exercise to actually perform, i.e. to give explicit expressions mapping the
various regions, as appropriate.

Essentially, the claim is straight-forward: topologically, all chaotic parts of a map
correspond to folding (as per Milnor, 1980’s on kneading maps), into which one may
surgically insert regions that have cycles of finite length. The surgical insertion can oc-
cur only at the discontinuities of the kneading map. It almost sounds trivial, expressed
this way; but the algebraic articulation of the idea would be worthwhile.
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17 Miscellaneous unfinished ideas
An ad-hoc collection of half-finished thoughts.

17.1 Multiplicative Shifts
A multiplicative shift is a shift assembled as an product of functions. The most famous
of these is the generating function for integer partitions

P(z) =
∞

∏
n=1

1
(1− zn)

Similarly products occur for the necklace counting functions, most famously the cy-
clotomic identity

1
1−β z

=
∞

∏
j=1

(
1

1− z j

)M(β , j)

where M (β , j) the necklace polynomial.
A far more obscure product expresses the Minkowski measure[47], given as

?′ (x) =
∞

∏
n=0

A′ ◦An (x)
2

with

A(x) =

{
x

1−x for 0 ≤ x < 1
2

2x−1
x for 1

2 ≤ x ≤ 1

with A′ being the derivative of A and An being the n’th iterate. The Minkowski measure
integrates to the Minkowski Question Mark function ?(y) =

∫ y
0 ?′ (x)dx; it is the proto-

typical “multi-fractal measure” (although there really is nothing “multi-” about it; the
“multi-” prefix stems from a misunderstanding of its multiplicative invariance). The
product structure indicates that the Minkowski measure is a Gibbs measure, viz arising
from an invariant Hamiltonian on a one-dimensional lattice.

The figure 28 suggests that a similar product can be constructed from the midpoint
sequence, namely

∞

∏
p=0

4mp (β )

β

for the midpoints mp (β ) = T p
β
(m0).

17.2 Midpoints, revisited
The midpoints are defined above as m0 = β/2, so that mp = Tβ (mp−1) = T p

β
(m0) with

Tβ (y) the beta shift map of eqn 4. Almost all literature uses the beta transform tβ (x)
of eqn 8 instead. The midpoint sequence and the iterate t p

β
(1) are closely related:

2mp mod 1 = t p+1
β

(1)
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Although related, they are not the same. The difference is a sequence of bits:

cp = 2mp − t p+1
β

(1)

Note that cp ∈ {0,1} always. Note that

β =
∞

∑
p=0

cp

β p

which is not entirely obvious!

17.3 Rauzy Fractals
Given a polynomial, one has an associated finite matrix, in Hessenberg form, that, iter-
ated upon, generates a sequence. The projection of that sequence to a non-expanding
orthogonal plane is a Rauzy fractal. What are the corresponding Rauzy fractals for this
situation?

How about the general iterated sequence (e.g. the sequence of midpoints)? Is this
space-filling, or not?

17.4 Fourier spectrum
What is the Fourier spectrum of the eigenfunctions?
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18 Orthogonal generators
The monomials are used to generate a set of orthonormal eigenfunctions, having eigen-
values β−n. Since orthonormality is fixed with respect to the invariant measure, the
monomials cannot be used in raw form; they must be orthogonalized. The procedure
explored here is basic Gaussian elimination.

Preliminary note about the confusion about measures. The Jacobian is used in the
integrals below. That is, the integrals are for∫

f (ρ (x))dx =
∫

f (y)
dy

ρ ′ (ρ−1 (y))

after substitution y = ρ (x), so that ρ ′ (ρ−1 (y)
)
= ν (y) is the Parry–Gelfond measure,

and, as the Jacobian of the change of variable, it appears in the denominator, not the
numerator. Basically, its the pushforward, not the pullback, so it puts the measure in
the denominator.

A function f is normalized with respect to the Gelfond–Parry measure ν if∫ 1

0
[ f (y)]2

dy
ν (y)

= 1

Two functions f ,g are orthogonal if∫ 1

0
f (y)g(y)

dy
ν (y)

= 0

The Gelfond–Parry measure ν is generated from ν0 = 1.
Let fn (x) = xn. Then ∫ 1

0
[ f0 (y)]

2 dy
ν (y)

=
∫ 1

0

dy
ν (y)

= N0

Likewise, define ∫ 1

0
f1 (y) f0 (y)

dy
ν (y)

=
∫ 1

0
y

dy
ν (y)

= P01

Define g1 (x) = x−P01/N0. It follows that∫ 1

0
g1 (y) f0 (y)

dy
ν (y)

= 0

The normalization is obtained by setting∫ 1

0
[g1 (y)]

2 dy
ν (y)

= N1

and so on down the line, gn (x) = fn (x)− Pn−1,ngn−1 (x)/Nn−1 so that they are all
orthogonal to one-another.
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Figure 52: Hausdorff moments
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The figure shows the (reciprocal of the) Hausdorff moments Qn for the Gelfond–Parry
measure, as a function of β on the horizontal axis.

18.1 Hausdorff moments
Define

Qn =
∫ 1

0
yn dy

ν (y)

Numerical exploration shows that nQn → F in the n → ∞ limit. Not obvious why
this would be. This is shown in figure 52.

18.2 Hamburger moment problem
The Qn are Hamburger moments, from the Hamburger moment problem. More pre-
cisely, this is the Hausdorff moment problem, since the measure is on the unit interval,
instead of the whole real-number line.

Given the sequence F{b}
m of beta-Fibonacci numbers, there is a corresponding Han-

kel matrix. The corresponding measure is presumably the Gelfond–Parry measure.
TODO: turn the crank and verify that this is so.

The relationship between Hankel matrices, shift operators and Hamburger moments
(Hausdorff moments) is well-known. What seems to be missing is an articulation for
the beta shift.

Also: See chapter on the Jacobi operator, much later in this text.
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19 Midpoint Moments
The derivative of the Gelfond–Parry measure is

mβ (y) =
∞

∑
k=0

δ (tk − y)
β k

where with δ (x) the Dirac delta, and tk are the iterated endpoints, tk ≡ tk
β
(1)= 2

β
T k

β

(
β

2

)
=

2
β

mk with tβ (x) = βx mod 1. It is particularly easy to compute the moments for this
function, as the integral becomes a sum:

Mn (β ) =
∫ 1

0
ynmβ (y)dy

The zeroth moment is

M0 =
∫ 1

0

∞

∑
k=0

δ (tk − y)
β k dy =

∞

∑
k=0

1
β k =

β

β −1

The first moment is the Gelfond–Parry normalization

M1 =
∫ 1

0
y

∞

∑
k=0

δ (tk − y)
β k dy =

∞

∑
k=0

tk
β k = F

In general

Mn (β ) =
∫ 1

0
yn

∞

∑
k=0

δ (tk − y)
β k dy =

∞

∑
n=0

tn
k

β k

Numerics shows that Mn (1) = n/(n−1). Not obvious why this would be. The Mn (β )
appear to all be discontinuous everywhere, as a function of β .

As n → ∞ one has tn
k → 0 since tk < 1 for all k > 0, except t0 = 1. Conclude that

Mn (β )→ 1 as n → ∞.

19.1 Orthogonal polys
What are the orthogonal polynomials for this measure? These are the polynomials

pn (x) =
n

∑
j=0

an jx j

with ∫ 1

0
pi (x) p j (x)mβ (x)dx = δi j

The first few can be done by hand: Clearly, p0 (x)= 1/
√

M0 and p1 (x)= (x−M1)/
√

N1with
normalization N1 = M2

2 −2M2
1 +M2

1 M0.
Writing an j = [A]n j = An j for a matrix A, the matrix is upper-triangular, solvable.

The polynomials are pn = An jx j and from orthogonality,
∫

pi p j = δi j = AikA jmMk+m it
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follows that I = AMAT where the moments are organized into a Hankel matrix [M]nm =
Mm+n. Since A is solvable,

[
A−1

]
n j = A jmMn+m =

[
MAT

]
n j or more directly, A−1 =

MAT .
Numerically, A is quite nasty, with large entries of alternating sign in each row.

Rows alternate sign, too, so that the diagonal is always positive, and rapidly increasing.
Seems like the diagonal increases faster than factorial. That is, ann ≳ Γ(n).

Numerically, A−1 is quite nice. Apparently, the alternating signs result in a nice
cancellation, since the entries of M tend to 1 quite rapidly.

The matrix O = A
√

M is orthogonal: OOT = I. How can
√

M be computed?
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20 Bergman (Hessenberg) Polynomials
Given a matrix operator in Hessenberg form, it can be interpreted as a right-shift on the
space of polynomials. Such polynomials form an orthogonal basis for a certain kind of
Hilbert space, called the Bergman space. They are studied in applied mathematics, as
they are orthogonal over some measure on the complex plane. The Hessenberg operator
is a generalization of the better-known case of the Jacobi operator, which has it’s own
extensive theory, including spectra and scattering, and is important for several exactly
solvable non-linear models in physics, including the Toda lattice[48]. The Hessenberg
operator presumably has an equally rich theory, but it does not appear to be currently
known; the breadth and scope of existing publications is limited.

The general framework for the Hessenberg polynomials is sketched below, includ-
ing a fast and informal definition of Bergman space (the space on which the polynomi-
als are orthogonal). The Hessenberg matrix is explicitly solvable on the left, and can
be explicitly brought into a from that exhibits the right-shift operator. In the general
theory, the change of basis from the shift operator to the Hessenberg matrix is known
to be the Cholesky decomposition of a moment matrix, and specifically, the moments
of the measure on which the polynomials are orthogonal.

There are two Hessenberg operators in this text: the operator Lβ in the wavelet
basis, and the operator Hβ generated from the midpoint orbits. The second is already
obviously a shift, and so everything below follows “trivially” from it. The first form is
is numerically and analytically difficult. Needless to say, the section below treats the
first rather than the second. XXX TODO this should be fixed, as Hβ is both simpler
and more enlightening overall. Later ...

Working backwards from the beta shift, the first asymptotic term in the measure can
be extracted. For β > ϕ , it appears to be a Dirac delta (point mass) located at z = 1 on
the complex plane, with a blancmange-like fractal curve giving the weight. For β < ϕ ,
it appears to be the derivative of the Dirac delta, with a different blancmange-like fractal
curve giving the weight.

20.1 Bergman Space
Given a matrix operator in Hessenberg form, it can be interpreted as a right-shift on
the space of polynomials. That is, given an unreduced Hessenberg matrix with matrix
entries Ai j, one can write a recurrence relation that defines a sequence of polynomials
as

zpn (z) =
n+1

∑
k=0

Akn pk (z) (49)

with p0 (z)= 1. This relation is easily solvable in closed form, as the recurrence relation
terminates in a finite number of steps.

One important property of these polynomials is that the zeros of pn (z) correspond
to the eigenvalues of the n×n principle submatrix of A. Numeric exploration of these
polynomials confirms the previous results on eigenvalues obtained from direct diago-
nalization: the zeros of the pn (z) seems to lie mostly near the circle of radius 1/β ,
distributed uniformly over all angles.
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If all of the sub-diagonal entries obey An+1,n > 0, then the polynomials form an
orthonormal basis for Bergman space. That is, there exists a domain in the complex
plane on which the polynomials provide a basis for a Hilbert space of holomorphic
functions on that domain[49, 50, 51]. That is, one has the orthogonality relation

δmn =
∫

D
pm (z) pn (z)dµ (z)

for some domain D ⊂ C of the complex plane, and some (Borel) measure dµ on that
domain.

The matrix A can be interpreted as an operator with a continuous spectrum. To do
this, fix a certain, specific value of z = c a constant, and then notice that p⃗ = (pn (z))

∞

n=0
is a vector having the property that AT p⃗ = zp⃗. That is, p⃗ is a left-eigenvector of A;
equivalently, a right-eigenvector of its transpose AT . Clearly, the spectrum is continu-
ous on the domain D.

The matrix operator A can also be interpreted as a right-shift on Bergman space. To
do this, define

A (w,z) =
∞

∑
k=0

∞

∑
n=0

pk (w)Akn pn (z)

Then, given some holomorphic function f (z) decomposed in terms of the polynomials,
so that f (z) = ∑n an pn (z), one has that

[A f ] (w) =
∫

A (w,z) f (z)dµ (z)

=∑
k

∑
n

pk (w)Aknan

=w∑
n

an pn (w)

=w f (w)

That is, given a sequence (a0,a1,a2, · · ·), the Hessenberg matrix acts as a right-shift,
mapping it to the sequence (0,a0,a1, · · ·).

This is perhaps a bit silly, as one could instead just perform the same manipulation
without the f (z), by observing that, formally,

A (w,z) = w
∞

∑
k=0

∞

∑
n=0

pk (w) pn (z)

The above treatment is breezy and “formal”, paying no heed to summability, con-
vergence or responding to any questions about what spaces the various vectors may
live in. This is as appropriate, since the task here is to discover which spaces are the
appropriate ones, when the Hessenberg matrix arises from the beta shift.

Notice that the word “operator” is a bit mis-used, here, as a vague synonym for
“infinite-dimensional matrix”. Properly, the word “operator” should be reserved for
an infinite-dimensional matrix acting on some given space, having general properties
that are independent of the basis chosen for that space. So far, that might not be the
case here: the infinite-dimensional matrices here might not be bounded operators; they
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Figure 53: Sub-diagonal Entries
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

Subdiagonal matrix entries for β=1.6

These charts show the sub-diagonal matrix entries
〈
n+1

∣∣Lβ

∣∣n〉 for the first n < 500.
The left graph shows β = 1.1, the right shows β = 1.6; other values behave similarly. A
scatterplot of the location of the spikes as a function of β does not reveal any structure.
That is, except for small n, the location of a spike shows no smooth variation as β is
varied smoothly. There does appear to be some structure for small n – some banded
sequences – and so perhaps the correct statement is that the system is mixing, as n
increases.

might not even be continuous, viz. we have not ruled out the possibility that the space
of interest is some Fréchet space or some more general topological vector space. It
is well known that operators on such spaces can have “unexpected” discontinuities,
unexpected in that they are not seen in ordinary Banach spaces.

At any rate, if polynomials obtained from the beta shift are orthogonal on some
domain D ⊂ C that is the support of some measure dµ , it is not at all clear what this
measure might be. They are certainly not orthogonal on the unit disk, with uniform
measure.

Notice also that the above treatment seems to be a special case of a more general
principle: when an operator has a continuous spectrum, it can sometimes be inter-
preted as a right-shift. That is, given some arbitrary operator H , then if one has that
H f = λ f and λ takes arbitrary values λ ∈ D ⊂C, then H can be taken to be a right-
shift operator, provided that f = f (λ ) can be decomposed into a set of orthogonal
polynomials in λ .

20.2 Beta Bergman Shift
The primary question for this section is whether the β -transform transfer operator, in
the Hessenberg basis, can be considered to be a Bergman shift.

To obtain the orthogonal polynomial basis, one must satisfy the constraint thatAn+1,n >
0 for the matrix elements Akn =

〈
k
∣∣Lβ

∣∣n〉 of eqn 29. Numeric exploration indicates
that this is indeed the case, with the sub-diagonal entries all positive (none are zero),
and all tend to have the same value, with sporadic exceptions. These are shown in
figure 53.
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Can one find a domain on the complex plane that would have such Bergman poly-
nomials? The references[49, 51] provide a technique for doing so, provided that the
matrix is asymptotically Toeplitz. That is, if the diagonals of Ai j have nice limits, that
limn→∞ An−k,n exists for fixed k, then a Jordan arc bounding a domain on the complex
plane can be found. The figure 53 indicates that this limit does not exist, in the strict
sense: the values bounce away from an obvious limit point indefinitely. Exactly what
this implies is unclear. Perhaps it is possible to extend the results of [49, 51] to matri-
ces that are where the diagonals merely have an accumulation point, as opposed to a
well-defined limit?

Based on numeric exploration, it appears that the domain is the unit disk. That is,
AT p⃗ = zp⃗ holds for |z| ≤ 1.

20.3 Bergman Alternative
The Bergman polynomials of eqn 49 define an orthonormal basis for some region of
the complex plane. For the square-integrable norm, this basis is the basis of a Hilbert
space, and specifically, that of a reproducing kernel Hilbert space.

Yet, something funny happens on the unit disk. Let pm (z) be the polynomials, and
for some sequence of coefficients {an}, consider a generic function

f (z) =
∞

∑
k=0

ak pk (z)

Consider the case where the {an} are a right-eigenvector of the Hessenberg operator,
that is, where

∞

∑
m=0

Akmam = λak

Substituting into the above, one has

f (z) =
∞

∑
k=0

1
λ

∞

∑
m=0

Akmam pk (z) =
z
λ

∞

∑
m=0

am pm (z) =
z f (z)

λ

There are two alternatives to solving this; either f (z) = 0 or z = λ . Since this is a
reproducing kernel Hilbert space, then if z = λ is part of the domain of the Bergman
space, then one must conclude that f (z) = 0 everywhere. That is, right-eigenvalues of
A correspond to functions f (z) that are vanishing. To invent a new name, by analogy
to the Fredholm alternative, perhaps this can be called the Bergman alternative.

Numerical exploration indicates that, for the matrix elements of eqn, 29, the func-
tion f (z) vanishes inside the unit disk |z| < 1, and is undefined (infinite) outside of
it.

20.4 Left Factorization
XXX TODO: somewhere just above, or maybe only below, I accidentally swapped left
and right. Thus, almost everything that is written is correct, except that some of the
transposes are in the wrong places. This needs review and correction.
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Suppose one is given an (arbitrary) sequence of polynomials (pn (z))
∞

n=0, such that
the order of pn is n. Then each individual polynomial can be expanded as or β > ϕ ,

pn (z) =
n

∑
k=0

pnkzk

This defines an infinite matrix P = [pnk], provided that the coefficients are extended
so that pnk = 0 whenever k > n. This matrix is manifestly lower-triangular. Writing
vectors z⃗ = (zn)∞

n=0 and p⃗ = (pn (z))
∞

n=0 as before, the above is just the matrix equation

p⃗ = P z⃗

Consider now the case where the polynomials were constructed from some irre-
ducible Hessenberg matrix A. The earlier observation that AT is a shift, namely, that
AT p⃗ = zp⃗ can now be written as

AT P z⃗ = zP z⃗ = P z⃗z = PK z⃗

In the above, the z without the vector notation is just a scalar, and thus commutes
(trivially) with P . Its eliminated by explicitly making use of the right-shift (Koopman)
operator, which, in this basis, is

K =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0
. . .

0 0 0 0
. . .


Since P is lower-triangular, it is invertable on the right, that is, the inverse P−1 exists,
and so one is left with

P−1AT P = K

The irreducibility of A is important, here; nonzero entries on the sub-diagonal are re-
quired, else trouble ensues.

Rearranging, this provides an explicit decomposition of A into triangular matrices:

AT = PK P−1

Taking the transpose, this gives

A =
[
P−1]T K T PT

with PT and
[
P−1

]T both being upper-triangular, and K T being the left-shift.
This system is solvable. Given some matrix A in Hessenberg form, the matrix

elements of P can be computed recursively, in a finite number of steps (i.e. in closed
form), directly from 49. The explicit expression is
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An+1,n pn+1, j = pn, j−1 −
n

∑
k=0

Akn pk j

The starting conditions are p00 = 1. To handle the j = 0 case in the above, set pn,−1 = 0.
Because P is lower triangular, its inverse P−1 ≡R = [rkn] can be obtained explic-

itly. Along the diagonal, one has rnn = 1/pnn while the lower triangular form means
rkn = 0 for k < n. For the remaining entries m < n, one has

0 =
n

∑
k=m

pnkrkm

This can be solved in a finite number of iterations on

pnnrnm =−
n−1

∑
k=m

pnkrkm

The above avoids questions of convergence, or any notion of the spaces on which
the matrices or operators might act. The norm to be used for z⃗ and p⃗ is not specified.
This is appropriate at this stage: it is the algebraic manipulations that are interesting,
at this point, rather than the spaces on which the matrices/operators might act. One
can invent several kinds of norms that might be applicable, but there is no particular
reason to believe that p⃗ might have a finite norm. Likewise, P may not have a finite
norm. For the case of the Hessenberg operator originating with the beta shift operator,
it does not; the individual matrix elements pnm increase without bound. That is, P is
an infinite matrix, but it is not clear that it is also an operator. If it is, it is certainly not
a compact operator.

Some of the poor behavior can be brought under control by factoring P = DN
with N being unitriangular (all ones on the diagonal) and D a diagonal matrix, with
entries [D ]nk = pnnδnk. With this factorization, one may then write

N −1AT N = DK D−1

so that DK D−1 has off-diagonal matrix entries
[
DK D−1]

nk = δn+1,k pnn/pkk. This
is a rescaling of the shift [K ]nk = δn+1,k. The scaling factor is exactly the sub-diagonal
of the Hessenberg. That is, pnn/pn+1,n+1 = An+1,n. The polynomials N z⃗ are monic.

20.5 Beta-transform factoids
An assortment of observations follow, for the case of the beta shift.

First, the matrix entries of P grow in an unbounded fashion. It appears that pnn ∼
O (β n); the ratio pnn/β n is depicted in figure 54.

Experimentation reveals two different regimes of behavior, depending on whether
or not β < ϕ =

(
1+

√
5
)
/2 the Golden ratio. Exactly why there are two different

regimes is unclear. Earlier sections motivated the reason for the appearance of the
golden mean; why this shows up dramatically, as it does here, is unclear (to me).
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Figure 54: Polynomial Operator Diagonal Entries
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Polynomial Operator Diagonal Entries for �=1.2

This depicts the ratio pnn/β n of the diagonal matrix entries pnn of the Bergman poly-
nomial matrix operator P for the beta shift with value β = 1.2. Other values of β

are not dissimilar, although the spikes are pushed more closely together. The height
of the spikes seems to be roughly the same, for all β . This is another way of visualiz-
ing the same information as in figure 53, as the ratio pnn/pn+1,n+1 is just given by the
subdiagonal entries An+1,n of the Hessenberg matrix. In particular, the straight edges
correspond to usually-constant values on the subdiagonal.
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One such result is that when β < ϕ , then the sum over columns of the Bergman
operator vanishes. That is,

∞

∑
k=0

pnk = δn0

This implies that every polynomial pn (z) has a zero at z = 1 (except for p0 (z) = 1)
when β < ϕ .

20.6 Decaying Eigenfunctions
The matrix mechanics developed in the previous sections can be used to perform
asymptotic expansions that rapidly converge to decaying eigenfunctions. This works
most simply for the case of ϕ < β . TODO Write these down. TODO flesh out. Ba-
sically, write a vector w⃗ with elements wn = ωn for 1 < |ω| so that this is divergent.
Then write the formal vector a⃗ =

[
PT

]−1 w⃗ which is formally divergent, but can be
truncated in finite dimensions, and renormalized to be of unit length. Doing so provides
an eigenfunction of A. The associated eigenvalue is 1 when β < ϕ but is less than 1
when ϕ < β (and in fact, the eigenvalue is exactly that depicted in figure 55). TODO
graph some of these, explore more thoroughly, address the issues of formal divergence.

20.7 Moment Matrix
When the Hessenberg matrix is derived from measures on the complex plane, it takes
the form of M = RRT with R = P−1, so that R is the Cholesky decomposition of
M . This matrix is manifestly symmetric: M = M T . Direct observation shows that it
is almost positive-definite: one finds that [M ]i j > 0 for all i, j except for [M ]00 = 0.
This result can be strengthened: when β < ϕ , then [M ]i j > 1 for all i, j except for
[M ]00 = 0 and [M ]0n = [M ]n0 = 1. But, for β > ϕ , one finds that [M ]00 = 0 and
[M ]01 = [M ]10 = [M ]11 = 1, while all the rest obey 0 < [M ]i j < 1.

In the standard literature, M is usually obtained from some moment matrix, viz, for
the integral

∫
zmzndµ (z) for some measure dµ (z). Might that be the case here? Tak-

ing the time to numerically characterize the matrix, one finds that the ratio of successive
rows (or columns as its symmetric) very quickly approaches a limit limn→∞, [M ]nm / [M ]n−1,m =
C (β ) for some constant C that depends only on β but not on m. The limit C (β ) is
graphed in figure 55.

For β < ϕ , it appears that limn→∞, [M ]nm = B(β ) a constant, independent of m.
This limiting value B(β ) is graphed in figure 56.

The asymptotic behavior of the matrix [M ]i j can be obtained as a moment matrix
on point sources. A delta function located at z =C for real C has the moments

Cmn =
∫

zmzn
δ (z−C)dz

=
∫

rmrn
δ (r−C)rdr

∫
δ (θ)e−imθ einθ dθ

=Cm+n+1

268



Figure 55: Symmetric Matrix Limit Ratio
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This figure shows the limit C (β ) defined in the text. Note that C (β ) = 1 for β <ϕ . The
jump is at about β = 1.83928676 · · · . Note this is one of the “troublesome midpoints”
for the Hessenberg basis expansion, specifically for T 3

β
(β/2) = 0 or β/2. This is one

of the first “generalized golden means”, the positive real root of β 3 −β 2 −β −1 = 0.
The entire fractal structure presumably corresponds to higher iterates p that satisfy
T p

β
(β/2) = 0.
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Figure 56: Symmetric Matrix Limit
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This figure shows the limit B(β ) defined in the text. The limit is approached fairly
quickly for the larger values of β , but convergence proves difficult for β ≲ 1.1.
The overall shape is that of a hyperbola, but doesn’t seem to actually be hyper-
bolic for either small or large β . The right-most nick in the curve appears to be at
β = 1.465571231876768 · · · , another “generalized golden mean”, and the only real
root of β 3 −β 2 − 1 = 0; equivalently, the root of T 3

β
(β/2) = 0. The remaining nicks

are presumably located at T p
β
(β/2) = 0 for higher iterates p.
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Figure 57: Point Weight
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This figure shows the value of A(β ) that gives the point weight of the moment matrix.
That is, the asymptotic behavior of M is given by [M ]mn →

∫
zmznρ (z)dz with the

measure given by a point mass ρ (z) = A(β )δ (z−C (β )). Clearly, there is a strong
resemblance to figure 55.

Thus, for ϕ < β , the asymptotic behavior of [M ]i j is given by the distribution A(β )δ (z−C (β )).
What is A(β )? This is graphed in figure 57.

What about β < ϕ? A limiting constant distribution can be obtained from a deriva-
tive point mass located at z = 1. That is,

Dmn =
∫

zmzn
δ
′ (z−1)dz

=
∫

rmrn
δ
′ (r−1)rdr

∫
δ (θ)e−imθ einθ dθ

=1

so that the asymptotic behavior of [M ]i j for β <ϕ is given by the distribution B(β )δ ′ (z−1).
The prime superscript here means derivative, viz, in colloquial language, δ ′ (z) =
dδ (z)/dz.
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21 The Jacobi Operator
Given a Borel measure on the real number line, one can find a sequence of polyno-
mials that are orthonormal with respect to that measure. These polynomials pn (x) are
coupled together by a three-term recurrence equation

xpn (x) = an+1 pn+1 (x)+bn pn (x)+an pn−1 (x)

with p0 (x) = 1 and p−1 (x) = 0. This recurrence relation can be taken to be an opera-
tor, known as the Jacobi operator J , acting on vectors consisting of the polynomials
p(x) = {pn (x)} so that

[J p] (x) = xp(x)

so that p is an eigenvector of J with eigenvalue x. The two sequences of coefficients
{an} and {bn} form three diagonals of the operator, with {an} running down the center,
and {bn} the two diagonals on either side[48].

Given that the invariant measure for the β -transform, given by eqn 18 and visual-
ized in figure 1 is a Borel measure, it seems reasonable to ask: what is the correspond-
ing Jacobi operator? How can the sequence of polynomials be understood?

Szegő polynomials w.r.t. dµ are a set of orthogonal polynomials on the unit circle.
Applying a Cayley transform gives the Schur functions, obeying a rational recurrence
relation solvable via continued fractions. Hmmm.

And then there is Favard’s theorem...

21.1 Moments
Construction of the polynomial sequences require moments. Since the invariant mea-
sures (and all of the eigenfunctions) are linear combinations of the Hessenberg basis
functions, it suffices to compute the moments for these. Since the basis functions are
piece-wise constant, and have an explicit expression given by eqn 28, the moments can
also be given explicit expression:∫ 1

0
xn−1

ψp (x)dx =
Cp

n

[
mn

p −mn
l

mp −ml
−

mn
u −mn

p

mu −mp

]
with the midpoint mp and the lower and upper midpoints ml < mp < mu defined just as
before. Clearly, the moments rapidly get small as n → ∞. Likewise, for fixed n, these
also rapidly get small as p → ∞.
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22 The Multiplication Operator
The difficulties presented in the previous section suggests that studying the multiplica-
tion operator might be simpler. Multiplication by β is given by

Mβ (x) = βx (50)

The corresponding transfer operator is

[
Mβ f

]
(y) =

1
β

f
(

y
β

)
The multiplication operator, superficially, in itself, is not terribly interesting; it simply
rescales things. It does not generate fractals, at least, not if one confines oneself to
real numbers and the canonical topology on the real-number line. If instead one works
with the product topology on 2ω , then the multiplication operator becomes rather com-
plicated and difficult to analyze. In this sense, it is promising: it avoids the overt
complexity of the logistic map, the tent map and the beta shift, yet still has a compli-
cated behavior in the product topology. In particular, the multiplication of two numbers
appear to involve chaotic dynamics of the carry bit.

22.1 Beta-shift, Revisited
The beta shift of eqn 4 takes a simple form when reinterpreted on bit-strings: it is
the concatenation of multiplication, followed by a left-shift. Given a bit-string (bn) =
0.b0b1b2 · · · denote its left-shift by U given by

U (0.b0b1b2 · · ·) = 0.b1b2 · · ·

which, for real numbers, corresponds to

U(x) =

{
2x for 0 ≤ x < 1

2
2x−1 for 1

2 ≤ x ≤ 1

which is none-other than the Bernoulli shift of eqn 1 with a change of notation. The
beta shift is then

Tβ (x) = Mβ (U (x))

so that the iterated beta shift is an alternation between a left-shift and a multiplication.
The act of discarding the most significant bit (the MSB) with each left-shift alters the
dynamics of iterated multiplication.

This suggests that studying multiplication and the multiplication operator might
provide fruitful insight into the beta shift.

22.2 Monomial Eigenfunctions
Some properties of the multiplication operator can be guessed at directly. Obviously,
f = const. is a decaying/growing eigenfunction, depending on whether β > 1 or not.
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That is, one should imagine f = const. as a uniform distribution of dust; with each
iteration, it is spread either farther apart (β > 1) or bunched closer together (β < 1).

Clearly, f (x) = xn is an eigenfunction, with eigenvalue 1/β n+1. If one considers
multiplication only to operate on the positive real-number line, then n need not be an
integer. In other words, the multiplication operator has a continuous spectrum in this
situation.

If the domain of the operator is extended to functions on the non-negative real-
number line, then n must be positive, as otherwise f (0) is ill-defined. But if n is
positive, then (for β < 1) the multiplication operator only has eigenvalues greater than
one, which is not, in general, very desirable.

If the domain of the multiplication operator is extended to the entire real-number
line, then n is forced to be an integer, in order to avoid issues due to multi-valued
functions. Extending the domain to the complex plane leads us astray, and so we will
not go there.

22.3 A Fractal Eigenfunction
The compressor function is also an eigenfunction. It was previously observed in eqn
15 that

cprβ

(
x
β

)
=

1
2

cprβ (x)

whenever 1 < β ≤ 2 and 0 ≤ x < 1 and so, cprβ is potentially be an eigenfunction of
Mβ with eigenvalue 1/2β , provided that it is extended to arguments 1 < x. This can be
done as follows. Define the extended function, valid for 0 ≤ x < ∞ and for 1 < β ≤ 2
as

ecprβ (x) =



cprβ (x) if 0 ≤ 2x < β

2cprβ

(
x
β

)
if β ≤ 2x < β 2

4cprβ

(
x

β 2

)
if β 2 ≤ 2x < β 3

2ncprβ

(
x

β n

)
if β n ≤ 2x < β n+1

The extension is performed simply by treating the self-similarity as a recurrence re-
lation, which can be iterated to move the argument into a region where the original
definition was sufficient. In essence, one applies a right-shift operator to reduce the
argument. Since the multiplication operator is odd about x = 0, on can trivially extend
this to negative x by defining ecprβ (−x) =−ecprβ (x).

Note that the original cprβ (x) also had a translation symmetry: the upper half
was equal to the lower half. This translation symmetry has been lost, since after all,
multiplication does not preserve translation.

The ecpr function is not square integrable; it does not have an Lp-norm for any p;
and this is no surprise, as its hard to imagine how it could be otherwise, for a function
to be self-similar under scaling.
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22.4 A Generic log-periodic Eigenfunction
Inspired by the above, its should be clear how to build a generic eigenfunction. Let
g(x) be some arbitrary function, defined on the interval 1 ≤ x < β (given some fixed
1 < β ). Define its extension as

g′w (x) = wng
(

x
β n

)
if β

n ≤ x < β
n+1

This has, by construction, the self-similarity relation g′w (βx) = wg′w (x) and so is an
eigenfunction with eigenvalue w/β :[

Mβ g′w
]
=

w
β

g′w

This function is merely log-periodic; its not fractal. Perhaps its silly to illustrate this; it
should be obvious, but just in case its not, the figure below shows such a function, for
β = 1.6 and w = 0.8. It is an eigenfunction of M1.6 with eigenvalue of 1/2.
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Log-periodic function

There doesn’t seem to be anything particularly interesting with this particular game.
There’s a simple explanation for this: The multiplication operator is generating a free
monoid in one generator (the iteration itself), whereas fractals require at least two
generators of self-symmetry. The (usually) free interaction of multiple generators is
what forces the fractal to appear.

Note that the cprβ function constructed above is a special case of this: It’s self-
similar, but the property that made it interesting, as a fractal, was erased in the con-
struction. As before, note that g′w (x

n) is an eigenfunction with eigenvalue 1/βwn (for
integer n).

22.5 Haar Basis Matrix Elements
The Haar basis matrix elements for the beta shift proved to be a bit unwieldy and not
terribly useful. The corresponding matrix elements for the multiplication operator have
the same general essence, but are slightly simpler and shorter to write down. In all other
respects, they still have the same tractability issues.
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The multiplication operator Mβ has matrix elements in the standard Haar basis:

〈
mi
∣∣Mβ

∣∣n j
〉
=
∫

∞

−∞

hmi (x)
[
Mβ hn j

]
(x)dx

=
2(m+n)/2

β

∫
∞

−∞

h(2mx− i)h
(

2nx
β

− j
)

dx

Instead of confining oneself to the unit interval, here it is convenient to consider the
entire real-number line, and thus that is the range of the integral. Likewise, i and j an
be any integers, positive or negative. As before, matrix elements vanish unless[

i
2m ,

i+1
2m

]
∩
[

β j
2n ,

β ( j+1)
2n

]
̸= /0

This holds in three cases: where one of the intervals contains an edge transition (left,
middle or right) of the other interval, without also containing the other two.

22.6 The Shift and Add algorithm
One can model the multiplication of real numbers with a number of different algo-
rithms applied to bit strings. One of the simplest such algorithms is the shift-and-add
algorithm, described here. Its just elementary-school long-form multiplication, applied
to the binary expansions of the numbers.

There’s a point worth laboring on: a bit string representing a real number is not the
same thing as the real number. There are more bit-strings than there are real numbers.
Most famously, the two bit strings 0.0111 · · · and 0.1000 · · · are two obviously distinct
bit-strings, but they represent the same real number: one-half. All real numbers of
the form j/2n (the “dyadic rationals”) will always have dual representations; all other
real numbers have a single, unique representation. These correspond to the “gaps” in
the Cantor set, or, equivalently, neighboring infinite branches in the finite binary tree.
Bit-strings are not real numbers. They’re just a usable model of them. The usability
is somewhat limited; its OK for working with individual points, but fails miserably for
the topologies: the canonical topology on the reals is sharply different than the product
topology on 2ω .

The goal is to compute the product Kx with 0 ≤ K ≤ 1 and 0 ≤ x ≤ 1 so that the
product is 0 ≤ Kx ≤ 1. Both K and x are represented by their binary expansions. Let
the binary expansions be

x = 0.b0b1b2 · · ·=
∞

∑
n=0

bn2−n−1

and

K = 0.c0c1c2 · · ·=
∞

∑
n=0

cn2−n−1

where the bn and cn are either 0 or 1, always.
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Define s0 = 0 and sn+1 to be the non-negative integer

sn+1 = bnc0 +bn−1c1 + · · ·+b0cn =
n

∑
k=0

bkcn−k (51)

Note that 0 ≤ sn ≤ n. It is useful to visualize this in terms of the elementary school
shifted tabular form:

0 c0b0 c0b1 c0b2 c0b3 · · ·
c1b0 c1b1 c1b2 · · ·

c2b0 c2b1 · · ·
+ c3b0 · · ·

——————————————–
s0 s1 s2 s3 s4 · · ·

This makes clear the shift-and-add form. The value of each individual sn can be vi-
sualized as a stack of blocks. For the special case of K = 0.111 · · · = 1 one has that
sn+1 = ∑

n
k=0 bk, that is, it is simply the total number of one-bits in the first n locations.

The final step is to reduce the the sum series sn to a bit-string. This is accomplished
recursively, by performing a carry operation:

dn = sn +

⌊
dn+1

2

⌋
(52)

where ⌊d⌋ = d mod 1 denotes the floor of d (the integer part of d). The desired bit
sequence is then

an = dn mod 2 (53)

Equivalently, an is the remainder, the part of dn that was not propagated to the next
location. Explicitly, is is an = dn −2⌊dn/2⌋. The carry-sum propagation can be imag-
ined as a kind of bulldozer, razing the towers dn until they are one block high, pushing
the razed bits off to the next location. The resulting sequence (an) is then the bit-string
for the product Kx. That is,

Kx = 0.a0a1a2 · · ·=
∞

∑
n=0

an2−n−1

The problem with this algorithm is that the relation 52 for the dn is infinitely re-
cursive, and in general is not guaranteed to terminate. One has to start at n = ∞ and
move backwards from there. There are two plausible scenarios for computing the an in
practice. One is to search the n until one finds that spot where ⌊dN+1/2⌋= 0; one can
then obtain the an for all n < N without issue. The problem here is to find such an N.

The other way to compute is to observe that the iteration is convergent. The re-
cursion 52 only depends on a finite and fixed number of bits “behind it”, roughly
equal to log2 n bits that come after this. As noted earlier, 0 ≤ sn ≤ n and likewise,
0 ≤ dn ≤ 2n+ 1. To write down dn, one needs at most C = 1+ ⌊log2 (2n+1)⌋ bits.
This implies that a given dn can only perturb at most C−1 bits downstream of it. That
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is, dn−C+1 depends on dn but dn−C does not. Thus, in order to correctly compute all bits
ak for 0 ≤ k ≤ n−C, it is sufficient to set dn to some arbitrary value (less than 2n+2)
and then iterate (using the correct values for sk when k < n). At the end, discard all dk
and ak for n−C < k, as they are incorrect.

22.7 Tree-view
Points:

1) adding one bit is like shifting the tree over sideways.
2) multiplying by one bit is like shifting the tree down-left.
3) adding a number to itself is like shifting tree up (since its just 2x)

278



23 Simplified Models of Multiplication
The shift-and-add algorithm is obviously rather complex; can it be replaced by some-
thing simpler? The particular question to ask is how much of the chaotic dynamics of
the beta shift is due to the propagation of the carry bit, and how much of it is due to
other parts of the algorithm? Specifically, the addition of two numbers, which requires
a carry bit, can be replaced by a bit-wise XOR of their bit strings: this generates “al-
most” the same results as addition, when the number of 1-bits in the strings are sparse,
but are wrong when 1-bits appear in the same location: the XOR discards the carry bits.
Thus, a simplified model of multiplication would the the shift-and-XOR model: it pro-
ceeds the same way as shift-and-add, but replaces addition with XOR. What does this
look like, and how does the equivalent of the beta shift behave under this operation?

23.1 Shift-and-XOR
The shift-and-XOR algorithm must like the shift-and-add algorithm, except that it
drops the carry bits. Starting from the same spot, let 0 ≤ K ≤ 1 and 0 ≤ x ≤ 1 and
represent both by their binary expansions:

x = 0.b0b1b2 · · ·=
∞

∑
n=0

bn2−n−1

and

K = 0.c0c1c2 · · ·=
∞

∑
n=0

cn2−n−1

where the bn and cn are either 0 or 1.
Define s0 = 0 and sn+1 to be the result of XOR-ing instead of adding the bits.

sn+1 = bnc0 ⊕bn−1c1 ⊕·· ·⊕b0cn =
n⊕

k=0

bkcn−k

Here, the oplus symbol ⊕ denotes the XOR operation. Note that each sn is either zero
or one. Reconstructing a real number from this, one defines

K ⊗ x = 0.s0s1s2 · · ·

where the otimes symbol ⊗ is pressed into service to indicate the shift-and-XOR prod-
uct. Note that it is symmetric: K ⊗x = x⊗K and so behaves at least a bit like ordinary
multiplication. Its is not distributive over ordinary addition: (a+b)⊗x ̸= a⊗x+b⊗x
but it is distributive over XOR: (a⊕b)⊗x = (a⊗ x)⊕ (b⊗ x). It is illustrated in figure
58.

The range of the shift-and-XOR operation is fundamentally different from multi-
plication. First, because the carry bit is dropped, one has that s0 = 0 always, and so
that K ⊗ x ≤ 1/2 always, even when both K → 1 and x → 1. Next, for any value of
1/2 < K ≤ 1, the range of K ⊗ x runs over the entire interval [0,1/2] as x runs over the
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Figure 58: Shift and XOR Algorithm
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This figure shows two functions, (2/3)⊗ x and (4/5)⊗ x as a function of x.

interval [0,1]. The measure is not compressed (other than by a factor of 2) , as there is
in ordinary multiplication. That is, if S ⊂ [0,1] is a measurable subset of the unit inter-
val, with measure µ (S), then one has µ (K ⊗S) = µ (S)/2. There are several ways to
prove this. One formal approach is to consider the correspondence between the natural
measure on the reals, and the measure of cylinder sets on the product topology. That
is, the Cantor space {0,1}ω is endowed with a natural topology, the product topology.
The open sets of this topology are called “cylinder sets”. Their measure is uniformly
distributed over unit interval, precisely because the Bernoulli shift is ergodic: the one
implies the other.

Indeed, the shift-and-XOR algorithm can be best thought of as a formula for shuf-
fling the bit-strings around, without actually altering them: reordering them, not chang-
ing them. The intuitive key to this is to observe that subtracting x from 1 just reorders
the unit interval, top to bottom, and that this is the same as flipping all zero bits to one,
and v.v. That is, 1− x = x⊕0.111 · · · .

Another way to see this shuffling is to note that a⊕a = 0 and that 0⊕ x = x. Thus,
for a fixed value of a, the string x and the string a⊕ x are paired together, in a unique
way, so that either can be gotten from the other. The function a⊕ [0,1]→ [0,1] sending
x 7→ a⊕ x is an exchange of these unique pairings of strings. It is not just a bijection,
it is an involution. If the strings are given their natural lexicographic sort order, the
mapping x 7→ a⊕x is just a certain kind of shuffle of the sort order; it neither adds new
strings, nor deletes any, nor changes their number. The function is one-to-one and onto.
The multiply-and-XOR algorithm is just a repeated sequence of XOR’s:

K ⊗ x =
(c0x

2

)
⊕
(c1x

4

)
⊕
(c2x

8

)
⊕·· ·

and so K⊗x is nothing more than a reshuffling of strings (along with a right-shift equal
to the number of leading zero-bits in the binary expansion of K; the right-shift com-
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mutes with the measure on the product topology.) Thus, K ⊗ x preserves the measure
on the unit interval (up to a factor of 2−n due to the above-mentioned right-shift). That
is, for 1/2 < K ≤ 1, this discussion shows that µ (K ⊗S) = µ (S)/2.

23.2 Self-similarity
There are several self-similarity properties of the shift-XOR worth noting. It behaves
very much like a classic dyadic fractal. Thus, one has that

K ⊗
( x

2

)
=

1
2
(K ⊗ x) =

1
2

K ⊗ x

In addition... TODO: illustrate the other symmetry.

23.3 Similarity Transformations
The shift-and-XOR algorithm acts as a permutation on bit-strings. As a result, the
XOR-analogs of the beta shift and the tent map become uniformly ergodic, behaving
exactly as the Bernoulli shift. The Frobenius-Perron solution to these is just the uniform
distribution, which is featureless. All of the structure visible in figures 2 and 4 is
entirely due to the dynamics of the carry bit. Effectively, the carry-bit algorithm alters
the uniform distribution of the Bernoulli shift (equivalently, the uniform distribution
associated with the natural measure on Cantor space.)

Define the XOR-analog of the beta shift as

cβ (x) =

{
2β ⊗ x for 0 ≤ x < 1

2
2β ⊗

(
x− 1

2

)
for 1

2 ≤ x < 1

The factor of 2 makes up for the fact that shift-XOR effectively drops the top bit; thus
the goal is to map each half of the unit interval into the entire interval [0,1].

Given a fixed β , define ⊠β : [0,1]→ [0,1] as

⊠β (x) = β ⊗ x

As observed previously, ⊠β is an automorphism of the unit interval, and more: it is a
permutation on Cantor space. Let b(x) be the Bernoulli shift of eqn 1; then one has that
cβ =⊠β ◦b. Taken together, this implies that the ergodic properties of iterating on cβ

follow directly from the ergodic properties of the Bernoulli shift; a shuffle, any shuffle
on the Cantor set should not alter these ergodic properties.

TODO: similarity transforms on the transfer operator... and the non-alteration of
the eigenspectrum, even as the eigenfunctions are altered.

23.4 Multiplication on the Cantor Space
The previous set of results indicates that all of the structure in the bifurcation diagrams
of 2 and 4 is entirely due to the dynamics of the propagation of the carry sum. To
explore this, the notation needs to be improved on.

281



The beta shift can be decomposed into multiple distinct stages. First, there is a
conversion from the unit interval to the Cantor space; this was defined at the very start,
but now we need a less awkward notation for it. Let

π : 2ω → [0,1]
0.b0b1b2 · · · 7→ x

be the projection from the Cantor space to the real-number unit interval, given by eqn
2. Note that it is a surjection: dyadic rationals (rationals of the form m/2n) correspond
to two distinct bit strings. For example, 1/2 can be represented as both 0.1000 · · · and
as 0.0111 · · · . Cantor space covers the unit interval. Write the inverse mapping as

π−1 : [0,1] → 2ω

x 7→ 0.b0b1b2 · · ·

As a function, it is injective but not surjective. It is usually convenient to ignore this,
and to pretend that both π and π−1 are bijections, even though they are not. This
rarely leads to practical difficulties, as long as one stays conceptually tidy. Better yet,
just perform all work on the Cantor space, and project to the unit interval only when
needed.

Next, turn to multiplication. This has three parts. First, the summation of the carry
bits:

Sβ : 2ω → Nω

0.b0b1b2 · · · 7→ (s0,s1,s2, · · ·)
where the summation is given by eqn 51. Here, Nω is Baire space, the space of all
infinite-length sequences of non-negative integers. In number theory, this would be
called the space of arithmetic functions. The second part of multiplication is the prop-
agation of the carry bits. Denote this as

C : Nω → Nω

(s0,s1,s2, · · ·) 7→ (d0,d1,d2, · · ·)

which is defined in eqn 52. Finally, one extracts the remainder, after propagation:

A : Nω → 2ω

(d0,d1,d2, · · ·) 7→ (a0,a1,a2, · · ·)

which is given by eqn 53. Of the three parts into which we’ve decomposed multiplica-
tion, only the first part is parameterized by K. Thus, multiplication, on Cantor space,
can be written as Mβ = A◦C◦Sβ . The shift-and-XOR algorithm omits the propagation
of the carry sum. On Cantor space, it is just ⊠β = A◦Sβ : the XOR is just modulo-2 of
the carry sum.

To obtain multiplication on the real-number unit interval, we need merely to re-
project from Cantor space to the reals. Thus, multiplication, given in eqn 50, decom-
poses into

Mβ = π ◦A◦C ◦Sβ ◦π
−1

The beta shift of eqn 4 is then

Tβ = π ◦A◦C ◦Sβ ◦π
−1 ◦b
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where b is the Bernoulli shift. To simplify notation, it is convenient to go ahead and
provide a symbol for the shift operator:

B : 2ω → 2ω

(b0,b1,b2, · · ·) 7→ (b1,b2, · · ·)

so that b = π ◦B◦π−1. The corresponding beta shift on the Cantor space is

Bβ = A◦C ◦Sβ ◦B

which eliminates the pesky projection π . It should be clear that Sβ is an injection, the
propagation operation C and the remainder A are both surjections.

As noted, the shift-and-XOR algorithm can be written as ⊠β = A ◦ Sβ ; the step
where the carry bits are propagated is dropped. The XOR-version of the beta shift is

cβ =⊠β ◦B = A◦Sβ ◦B

Thus, in this new notation, it reaffirms that B is the true source of ergodicity, and that
A ◦ Sβ being a permutation does not alter the basic ergodic property of B. All of the
structure in the bifurcation diagrams can be blamed on the propagation operator C.

23.5 Propagation games
Pinning the “blame” of complex dynamical structure on the propagation of the carry
bits seems to be an open invitation to replace the propagation operator C by just about
anything, to see what happens. Figure 59 illustrates some of the things that can happen.

Reviewing the images there makes it clear that although fiddling with the carry bit
fundamentally alters point trajectories, it completely fails to open any doors that would
provide insight into the structure of the transfer operator. The pictures are pretty, but
appear to be meaningless.
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Figure 59: Carry-bit propagation

Two triptychs of different carry-bit behaviors. Define F : Nω → Nω by F = f × f ×
f ×·· · and then iterate on A◦C ◦F ◦Sβ ◦B. For f (n) = n one obtains, of course, the
standard beta shift of figure 2. The top-left image shows f (n) = n mod 2, which is the
same as iterating on the shift-XOR function cβ . Here, β runs from 0 at the bottom, to
2 at the top; x runs from 0 to 1, left to right. The uniform red square simply indicates
that the iteration is completely independent of β when 1 < β ≤ 2: it is fully uniform
and ergodic in the same way that the Bernoulli shift is. The top-middle image shows
f (n) = n+ 1, that is, pretending that there is one carry bit too many. The top-right
shows f (n) = max(0,n−1), that is, having one carry-bit too few.
The bottom three shows a progression of f (n) = max(n,1), f (n) = max(n,2) and
f (n) = max(n,3), allowing more and more carry bits to propagate. In the limit, this
becomes figure 2 once again. Except for the top-left image, the rest seem pointlessly
goofy.
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24 Sci-fi day-dreaming
This section provides two day-dreams inspired by this material. They are just that:
daydreams. If you don’t like fictional daydreaming, you won’t like the material here.
Sorry about that.

24.1 Limits to computation
There are many limits to computation. One limit is the speed of light. In current gener-
ation CPU chips, clock rates in the vicinity of 3 gigahertz= 3×109 cycles per second.
By comparison, the speed of light in a vacuum is about 3× 108 meters per second.
Dividing, one finds that light can travel about 3×108/3×109 = 10−1 meters, or about
four inches: a bit bigger than the actual physical dimensions of a chip (typically around
half-an-inch on a side), but not by much. Of course, the speed of light in a metal con-
ductor is lower – about half the speed in a vacuum. And transistors are small – more
than twenty-thousand times smaller. So, measured in terms of the size of the transistor,
the speed of light is about ten or twenty transistor-widths per clock-cycle. So, OK, its
still fast, at that length scale. But not really all that fast. The point here is that the speed
of light is a potential limit to the speed of computation, and it is not all that far away.

In this setting, one can imagine the situation where the speed of propagating the
carry bit during multiplication becomes a limiting factor. The above work hints at a
somewhat mind-boggling idea: can multiplication be effectively parallelized by work-
ing with transfer operators instead? That is, the multiplication of two numbers cor-
responds to point-wise particle dynamics: a discrete particle following a chaotic path
through a complex numerical computation. By contrast, the transfer operator describes
how a distribution propagates through a computation: it effectively performs “an infi-
nite number” of multiplications at the same time, in parallel. That is, rather than asking
how single values propagate, one could, and perhaps should, ask how distributions
propagate – parallelize multiplication (for example) to an “infinite” degree. It is this
rather ridiculous idea that suggests that the above explorations are not purely abstract,
but have a potentially practical application. As I suggested – its a bit of science-fiction
day-dreaming at this point. But it does hint at an alternate model of computation.

Variants of this model have already been explored, for decades. For example,
Crutchfeld defined “geometric state machines” as generalizations of finite state ma-
chines, where, instead of having a finite matrix (a “transition matrix”) act on a finite
vector (the “state vector”), one instead considers operators acting on homogeneous
spaces – that is, applying a sequence of such operators on homogeneous space. The
most famous and celebrated such space would the CPn – complex projective space,
with the operators that act on it being the the unitary ones: U(n) – such a system defin-
ing the n-qubit quantum state machine. Distributions on CPn are mixed states – and
the idea of quantum computing is to evolve such states through a set of operations.

Note that ALL quantum computing can be understood to be nothing more than a
Crutchfeld machine. For whatever reason, this is almost never stated outright. This is
unfortunate, since the Crutchfeld machine is quite easy to understand, whereas “quan-
tum computing” seems to be mired in mystery, at least for the uninitiated.
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The point here is that computation, by means of the time-like evolution of distri-
butional densities, is already being explored, but in a rather different context than the
one explored here. Here, it seems like we are bowled over by the complexities of a
seemingly much simpler system.

24.2 Wave function collapse
There is also a different, bizarrely hypothetical way in which all of this apparatus could
manifest itself. Currently, in order to avoid the rather severe issues associated with the
concept of quantum-mechanical wave-function collapse, the (vast?) majority of prac-
ticing physicists believe in the many-worlds hypothesis. Clearly, this belief is entirely
correct for microscopic systems, isolated from the usual thermodynamic hustle and
bustle (chlorophyll, rhodopsin and the magnetically sensitive cryptochromes notwith-
standing). But it seems to fly in the face of daily experience, where we are aware of
just one reality. One of my favorite hypotheses is that this is the result of the (rapid)
decay of macroscopic quantum states down to a probability of zero. The mechanism is
presumably that of decaying subshift measures. Penrose argues that this has something
to do with gravity; but we can go one better: the natural setting for shift spaces are hy-
perbolic spaces, as that is where there is enough room to “fit everything” in a uniform
way consistent with a metric. Curiously, the world we live in – Minkowski space, is
hyperbolic. This suggests that the Many Worlds interpretation is exactly right, as long
as one truly is in Minkowski space, but that gravitation, which essentially bends or
distorts it, squeezes down the room available for multiple quantum states, effectively
forcing the collapse in this way.

Put another way: the standard treatment for quantum field theory is the Feyn-
man functional integral; it can be viewed as an integral over all possible paths that
a “particle” might take. The daydream is to equate a specific path with the idea of
point-dynamics in an iterated function. As long as one considers only points, and their
movement, one can be completely unaware of either the invariant measure, or of the
decaying eigenstates of the shift operator. In a standard QFT textbook, all equations
appear microscopically time-reversible. There’s almost no idea of a measure, except
for the exp−iℏS in the Feynman integral. The incorporation of gravity into this is fa-
mously difficult. The daydream here is that gravity manifests itself as eigenfunctions
that live off of the shell of unitary evolution.

There is some practical hope of bringing this daydream to fruition: the theory of
subshifts has seen dramatic advances over the last few decades, getting increasingly
abstract, and gaining a firm footing in very general settings: viz not just in metric
spaces, but even in more general topological vector spaces, and specifically in stereo-
type spaces, where most of the devices used in analysis can be exercised in reasonably
safe manner. The point here is that most of QFT can be formulated using these more-or-
less conventional tools and notations. The trick is to locate and extract those parts that
renormalize to zero, not unlike some of the formally divergent sums explored above,
which can none-the-less be regulated and made to give reasonable answers. Or at least,
that’s the daydream. Clearly, got far to got before it can be reality.
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25 Conclusion
What, exactly, is the point of analytic mathematics, especially in the computational
age? Can’t one just get a fast computer, iterate on the logistic map, and find out ev-
erything there is to find? Well, of course, yes, and no: these questions can be taken as
either silly or as deeply philosophical, and it is worth the effort to understand them and
address them properly.

First, lets dispose of some obvious mis-perceptions. If one carefully scrutinizes
figure 1, one will find signs of a slight unevenness in the horizontal bars. These are
numerical artifacts due to statistical under-sampling: they smooth out and fade away
with additional sampling of the iterated equations. There is a way to obtain this same
figure, far more rapidly, and without this particular form of numerical noise: one can
instead iterate on equation 19. This suggests one philosophical answer: the goal of
mathematics is to find faster ways of computing things; to discover better algorithms.

A uniting theme between this, and the other text that I have written on fractal issues,
is that they are all explorations of the structure of the Cantor set, the structure of the
space of infinite sequences of symbols, and the structure of the continuum. That is, we
know the continuum in two different ways: one way is by means of the natural topology
on the real number line; the other is the product topology on the space of binary strings.
The former is suggested by the physical universe that we actually live in: a continuum
with spatial extents. The latter is suggested by the notion of time and repetition: the
making of choices naturally leads to a tree structure; tree structures necessarily embed
in hyperbolic spaces; the Minkowski space that we live in is hyperbolic, and this is
why, every day, as time passes on, we get to make new choices precisely because the
amount of room for possibilities is ever-increasing as time flows forward.

The idea of analytic combinatorics takes on a whole new meaning in the compu-
tational age. Historically, the ability to provide an “exact solution” in the form of an
analytic series has been highly prized; the ultimate achievement in many cases. Being
able to expression a solution in terms of the addition and multiplication of real num-
bers is very comforting. Every school student eventually comes to feel that arithmetic
on the real numbers is very natural and normal. It’s more than that: Cartesian space
is smooth and uniform, and all of differential geometry and topology are founded on
notions of smoothness.

The inner workings of computers expose (or hide!) a different truth. The most
efficient algorithm for computing sine(x) is not to sum the analytic series. Arbitrary
precision numerical libraries open the rift further: neither addition nor multiplication
are simple or easy. Both operations have a variety of different algorithms that have
different run-times, different amounts of memory usage. In the effort to minimize
space and time usage, some of these algorithms have grown quite complex. The root
cause of the complexity is bewildering: it is the use of the binary digit expansion to
represent a real number. Computers use the Cantor space {0,1}ω or at least a subset
thereof, under the covers.

Different representations of the real numbers potentially offer different algorithms
and performance profiles. One could represent reals by rationals, but then several other
issues arise. One is that the rationals are not evenly distributed across the real number
line: rationals with small denominators cluster about in a fractal fashion. This is easily
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exhibited by considering continued fractions. As a result, one promptly gets stuck in
a quagmire of trying to understand what a “uniform distribution” should be. Binary
expansions are more “obviously” uniform. A more basic issue is that, if working with
rationals, one must somehow accomplish the addition or multiplication of two integers.
To accomplish this, one has to represent the integers as sequences of bits, which only
takes us back to where we started. There is no computational oracle that automatically
knows the sum or product of integers: it has to be computed.

Compare this situation to that of iterated functions and fractals. At first impression,
these seem pathological in almost every respect: differentiable nowhere, unbounded
and nonuniform: somehow they feel like the quintessential opposite of the analytic
series, of the smoothness of Cartesian space, of the smoothness of addition and mul-
tiplication. The place where these two worlds come together is that both are attempts
to approach countable infinity, and both are attempts to harness the first uncountable
infinity. The real number number is an infinite string of binary digits. The analytic
series is an infinite sum. The iterated function is recursively infinite. The historic labor
of finding “exact solutions” to problems can perhaps be better views as the discovery
of correspondences between finite structures (“the problem to be solved”) and infinite
structures (“the solution”).

The situation here is more easily illustrated in a different domain. The hyperge-
ometric series was presented and studied by Gauss; then Kummer, Pfaff and Euler
observed various identities yoking together different series. By the 1950’s, thousands
of relations were known, along with some algorithms that can enumerate infinite series
of relations. The current situation is that there is no known algorithm that can enumer-
ate all such relations; there is no systematic way to classify them. There is an interplay
between infinite series and algorithmic relationships between them. Stated a different
way: hypergeometric series have a class of self-similarities, and the identities relating
them are expressions of that self-similarity. What is that class of self-similarities? For
the hypergeometric series, it remains unknown.

For Cantor space, that place where we represent real numbers, the situation is much
better. The Cantor space itself has the structure of an infinite binary tree; the tree
and it’s subtrees are obviously self-similar; the class of similarities is described by
the dyadic monoid. The dyadic monoid embeds naturally into the modular group;
this in turn is a gateway to vast tracts of modern mathematics. The recursive aspects,
the shadow that the Cantor space seems to leave behind everywhere appears to be
“explained” by Ornstein theory.

Yet, the picture remains incomplete. The β -transform provides a simple, silly
model for multiplying two real numbers together: β and x. The “extra complication”
of taking mod 1 after multiplication just reveals how complex multiplication really is.
After all, mod 1 is just the subtraction of 1; how hard can that be? Moving in one direc-
tion: the fastest, most-efficient-possible algorithm for multiplying two numbers is not
known. Moving in another direction, the simple iterated maps, shown in figures 2, 4
and 5 are obviously not only self-similar, but also are surely topologically conjugate to
one-another, and in all cases are presumably described by the dyadic monoid; likewise
the Mandelbrot set and it’s exterior. Yet the details remain obscure.

The meta-question is: what is the correct framework by which one can best un-
derstand the interplay between symmetries, infinite series, infinite recursion and al-
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gorithms? Until modern times, mathematical practice has reified addition and multi-
plication into oracular operations that magically obtain “the right answer”. Modern
computers have put a lie to this: the theory of numerical methods has made clear that
addition and multiplication are necessarily algorithmic operations performed on finite
truncations of infinite series. What other algorithms are hiding nearby, and what is their
relationship to analytic series?
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26 Bibliography
The references below provide a bibliography that attempts to touch on all the differ-
ent ways in which the beta transform and beta expansions have been studied. Search
engines exist to help you find the things you don’t know, and want to find out more
about.
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Appendix
A lot of notation has been introduced, and can be difficult to track. This is an abbrevi-
ated listing of the definitions.

The β -transformation The β -transformation is tβ (x) = βx mod 1

The beta shift The β -shift is defined in 4

Tβ (x) =

{
βx for 0 ≤ x < 1

2
β
(
x− 1

2

)
for 1

2 ≤ x ≤ 1

The relation to the β -transformation is given in 9 as

T n
β
(x) =

β

2
tn
β

(
2x
β

)
for all positive integers n.

The beta bitsequence The beta shift generates a bitsequence, defined in 5 as

kn (x) =

{
0 if 0 ≤ T n

β
(x)< 1

2

1 if 1
2 ≤ T n

β
(x)≤ 1

Equivalently, written with the Heaviside Θ, this is

kn (x) = Θ

(
T n

β
(x)− 1

2

)
Substituting in the β -transformation,

kn (x) = Θ

(
β tn

β

(
2x
β

)
−1
)

The β -expansion The bit-sequence defines a unique base-β expansion, given in 6 as

x =
1
2

∞

∑
n=0

kn

β n

The beta shift acts on this series as T (k0k1k2 · · ·) = k1k2 · · ·

The midpoint/endpoint orbit The iterated endpoint of the β -transformation is the
same as the iterated mid-point of the beta shift. It is

tn ≡ tn
β
(1) =

2
β

T n
β

(
β

2

)
The iterated mid-point is written as m0 = β/2 and mn = T n

β
(β/2).
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Gelfond–Parry digit sequence The Gelfond–Parry digit sequence εn, defined for a
fixed β and a real number 0 ≤ y ≤ 1, is given in 11 is

εn (y) =

{
1 if y ≤ tn

β
(1)

0 otherwise

Using the Heaviside step function, this can be written as εn (y) = Θ(tn − y). This is
rescaled to the beta shift in 23

dn (x) = εn

(
2x
β

)
= Θ

(
β

2
tn − x

)
= Θ

(
T n
(

β

2

)
− x
)
=

{
1 if x < T n

(
β

2

)
0 otherwise

This digit sequence runs in the “opposite direction” from the beta bitsequence. The
transfer operator is a pushforward; the Koopman operator is a pullback.

Gelfond-Parry measure The Gelfond-Parry measure, defined for a fixed β and a
real number 0 ≤ y ≤ 1, is given in 10

νβ (y) =
1
F

∞

∑
n=0

εn (y)
β n

with normalization

F =
∞

∑
n=0

tn
β
(1)

β n

Characteristic bit-sequence Every value of β has a characteristic bit-sequence, ob-
tained from iterating the mid-point m0 = β/2.

bn =Θ

(
mn −

1
2

)
=Θ

(
T n

β

(
β

2

)
− 1

2

)
= dn

(
1
2

)
= kn

(
β

2

)
= εn

(
1
β

)
=Θ(β tk −1)

Note that b0 = 1 always.

Stopping algo The bracketing constraint given in 32 is a boolean function (returning
true/false)

θn (ρ) =

{
Θ
(
rn/2 −ρ

)
·θn/2 (ρ) for n even

θ⌊n/2⌋ (ρ) for n odd

where rn is the positive real root pn (rn) = 0. The above defintion is written in tail-
recursive form, and so can be expressed as a loop:

mprev := n
m := ⌊n/2⌋
while (0 < m)

mprev is even and rm < ρ then fail
mprev := m
m := ⌊m/2⌋

if arrived here, then success
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Polynomials The self-describing polynomials are

pn (z) = zk+1
(

1−b0z−1 −b1z−2 −·· ·−bkz−k−1
)

These have the property that if β generated the characteristic bitsequence {bk}, then
pn (β ) = 0. For infinite-length bitsequences, define the holomorphic function

q{b} (ζ ) = 1−
∞

∑
j=0

b jζ
j+1

which recovers the polynomial when ζ = 1/z.

That’s all, folks!
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