The Black Body Radiation

= Chapter 4 of Kittel and Kroemer

The Planck distribution

Derivation

Black Body Radiation

Cosmic Microwave Background The genius of Max Planck

Other derivations

Stefan Boltzmann law

Flux => Stefan- Boltzmann Example of application: star diameter

Detailed Balance: Kirchhoff laws

Another example: Phonons in a solid

Examples of applications Study of Cosmic Microwave Background Search for Dark Matter

The Planck Distribution

Mode characterized by

Frequency ν Angular frequency $\omega = 2 \nu$

Number of photons s in a mode => energy $\varepsilon = shv = s\hbar\omega$ s is an integer ! Quantification

Similar to harmonic oscillator

Photons on same "orbital" cannot be distinguished. This is a quantum state, not s systems in interactions!

Occupation number

Black Body Radiation

Maxwell equations in vacuum

$$\vec{E} = \frac{\rho}{\varepsilon_o} = 0 \quad \vec{\times} \quad \vec{E} = -\frac{B}{t}$$

$$\vec{B} = 0 \quad \vec{\times} \quad \vec{B} = \mu_o \quad \vec{j} + \varepsilon_o \quad \frac{\vec{E}}{t} = \mu_o \varepsilon_o \quad \frac{\vec{E}}{t} = \frac{1}{c^2} \quad \frac{\vec{E}}{t} \quad (\vec{j} = 0!)$$
Using identity
$$\vec{\times} \quad \vec{\times} \quad \vec{E} = \vec{(\vec{E})} - \frac{2\vec{E}}{t}$$

$$\frac{2\vec{E}}{t} = \frac{1}{c^2} \quad \frac{2\vec{E}}{t^2} \quad (\text{wave equation})$$
Solutions
$$\vec{E} = \vec{E}_o \quad exp(i(\vec{k}.\vec{x} - \omega t)) \text{ with } k = \frac{\omega}{c} \text{ and } \vec{k}.\vec{E}_o = 0 \qquad p = \hbar k = \frac{\hbar\omega}{c} = \frac{\varepsilon}{c}$$

=> Photon has zero mass and 2 polarizations

Radiation energy between ω and ω +d ω ?

State (=mode)density in phase space

$$2\frac{d^3xd^3p}{h^3}$$
 integrating over angles $\frac{d^3x \ p^2dp}{^2\hbar^3} = \frac{d^3x \ \omega^2d\omega}{^2c^3}$

 $u_{\omega}d\omega = \frac{\# \text{ states}}{\text{unit volume}} \times \text{energy of state} \times \text{average occupation number}$

Cosmic Microwave Radiation

Big Bang=> very high temperatures!

When T 3000K, p+e recombine =>H and universe becomes transparent

Conclusions:

• Very efficient thermalization

In particular no late release of energy

- No significant ionization of universe since!
 - e.g., photon-electron interactions= Sunyaev-Zel'dovich effect
- Fluctuations of T =>density fluctuations
 - COBE DMR result

The genius of Max Planck

Before

Physicists only considered continuous set of states (no 2nd quantization!) Partition function of mode

$$Z_{\omega} = \frac{1}{0} dx \exp \left(-\frac{\hbar\omega x}{\tau}\right) = \frac{\tau}{\hbar\omega}$$

Mean energy in mode

 $\langle \varepsilon_{\omega} \rangle = \frac{\tau^2 \log Z}{\tau} = \tau$ independent of

Sum on modes => infinity ="ultraviolet catastrophe"

Other derivations (1)

Grand canonical method

What is μ ? There is no exchange of photons with reservoir (only exchange of energy) => entropy of reservoir does not change with the number of photons in the black body (at constant energy) Zero chemical potential! => $\langle s \rangle = \frac{1}{exp \frac{\hbar\omega}{\omega} - 1}$

$$\frac{\sigma_R}{N_{\gamma BB}}\bigg|_U = \frac{-\mu_{\gamma}}{\tau} = 0$$

Microscopic picture

Photons are emitted and absorbed by electrons on walls of cavity We have the equilibrium We have the equilibrium $\gamma + e e$ Special case of equilibrium (cf Kittel & Kroemer Chap. 9 p. 247)

A + B = C

Equilibrium corresponds to maximum entropy $d\sigma = 0$ =>

In particular

$$d\sigma|_{U,V} = \frac{\sigma}{N_A} dN_A + \frac{\sigma}{N_B} dN_B + \frac{\sigma}{N_C} dN_C = 0$$

$$dN_A = dN_B = -dN_C \qquad \qquad \mu_A + \mu_B - \mu_C = 0$$

$$\mu_{\gamma} + \mu_e - \mu_e = 0 \qquad \qquad \mu_{\gamma} = 0$$

this is due to the fact that the number of photons is not constant

Other derivations (2)

Microcanonical method (Done in Homework)

To compute mean number photons in one mode, consider ensemble of N oscillators at same temperature and compute total energy U $\langle \varepsilon \rangle = \lim_{N} \frac{U}{N} \qquad \langle s \rangle = \frac{\langle \varepsilon \rangle}{\hbar \omega} = \lim_{N} \frac{U}{N\hbar \omega}$ =>Microcanonical= compute entropy $\sigma(U)$ with $U = n\hbar\omega$ (n photons in combined system) and define temperature at equilibrium as $\frac{1}{\tau} = \frac{\sigma}{U}$ $\tau(U)$ $U(\tau)$ $\langle s \rangle \langle \tau \rangle$ We have to compute the multiplicity g(n,N) of number of states with energy U= number of combinations of N positive integers such that their sum is n The such that their sum is in $N_{i} = n = \frac{U}{\hbar\omega} \quad n_{i} \quad 0$ i = 1Same problem as coefficient of tⁿ in expansion (cf Kittel chap. 1) m = 0 $t^{m} = \left(\frac{1}{1-t}\right)^{N} = g(n, N)t^{n}$ $= g(n,N) = \frac{1}{n!} \frac{n}{t^{n}} \left(\frac{1}{1-t} \right)^{N} = \frac{1}{n!} \frac{1}{N} (N+1) (N+2) (N+n-1) = \frac{(N+n-1)!}{n! (N-1)!}$ Using Stirling approximation $\sigma(n) = \log(g(n, N)) \qquad N \log\left(1 + \frac{n}{N}\right) + n \log\left(1 + \frac{N}{n}\right) = N \log\left(1 + \frac{U}{\hbar\omega N}\right) + \frac{U}{\hbar\omega}\log\left(1 + \frac{N\hbar\omega}{U}\right)$ $\frac{1}{\tau} = \frac{\sigma}{U} = \frac{1}{\hbar\omega} \log 1 + \frac{N\hbar\omega}{U} = \frac{1}{\hbar\omega} \log 1 + \frac{1}{\langle s \rangle} \qquad \text{or} \qquad \langle s \rangle = \frac{1}{\exp \frac{\hbar\omega}{\tau}} - 1$ =>

Counting Number of States

Fluxes

Energy density

So far energy density integrated over solid angle. If we are interested in energy density traveling traveling in a certain direction, isotropy implies

$$u_{\omega}(\Omega)d\omega d\Omega = \frac{\hbar\omega^{3}d\omega d\Omega}{4 \quad {}^{3}c^{3} exp \quad \frac{\hbar\omega}{\tau} \quad -1}$$

Note if we use instead of
$$u_{\nu}(\)d\nu d = \frac{2h\nu^{3}d\nu d}{c^{3} exp \quad \frac{h\nu}{\tau} \quad -1}$$

Flux in a certain direction

(Energy /unit time, area, solid angle, frequency)

$$I_{v}dvdAd\Omega = cu_{v}dvdAd\Omega = \frac{2hv^{3}dvdAd\Omega}{c^{2} exp \frac{hv}{\tau} - 1}$$

(Energy /unit time, area, frequency)

$$J_{v}dvdA = dvdA \quad \int_{0}^{2} d\phi \quad \int_{0}^{1} I_{v}\cos\theta \quad d\cos\theta = \frac{2 hv^{3}dvdA}{c^{2} \exp \frac{hv}{\tau} - 1} = \frac{c}{4}u_{v}dvdA$$

Physics 112-5 (F2002)

Stefan-Boltzmann Law

Total Energy Density***

Integrate on

$$\begin{array}{l} u_{\omega}d\omega = \int_{0}^{0} \frac{1}{2c^{3}} \frac{\hbar\omega^{3}}{exp} \frac{\hbar\omega}{\tau} & -1 \\
\begin{array}{l} u_{\omega}d\omega = \frac{\tau^{4}}{\hbar^{3}} \int_{c}^{0} \frac{x^{3}dx}{e^{x}-1} & \omega & x = \frac{\hbar\omega}{\tau} \\
\int_{0}^{0} u_{\omega}d\omega = \frac{\tau^{4}}{\hbar^{3}} \int_{c}^{0} \frac{x^{3}dx}{e^{x}-1} & \omega & x = \frac{\hbar\omega}{\tau} \\
\int_{0}^{0} \frac{x^{3}dx}{e^{x}-1} = \frac{4}{15} \\
\begin{array}{l} u = \frac{2}{15\hbar^{3}c^{3}}\tau^{4} = a_{B}T^{4} \\
\end{array}$$
with $a_{B} = \frac{2k_{B}^{4}}{15\hbar^{3}c^{3}}\tau^{4}$

Total flux through an aperture***

Integrate J = multiply above result by c/4

$$J = \frac{2}{60\hbar^3 c^2} \tau^4 = \sigma_B T^4 \quad \text{with } \sigma_B = \frac{2k_B^4}{60\hbar^3 c^2} = 5.67 \ 10^{-8} \ \text{W/m}^2/\text{K}^4$$

Stefan-Boltzmann constant!

Spectrum at low frequency

Physics 112-5 (F2002)

Applications

Entropy, Number of photons

Entropy

Detailed Balance: Kirchhoff laws

Definition: A body is black if it absorbs all electromagnetic

radiation incident on it

Usually true only in a range of frequency

e.g. A cavity with a small hole appears black to the outside

Phonons in a solid

Phonons:

Physics 112-5 (F2002)

k

Phonons in a Solid

Debye law $\int_{0}^{\omega_{D}} VD(\omega) d\omega = \int_{0}^{\omega_{D}} V \frac{3 \omega^{2}}{2 c^{3}} d\omega = 3N \qquad \omega_{D} = \frac{6N}{V} \pi^{2} c_{s}^{3} \frac{1}{3} = 6^{-2} \frac{1}{3} \frac{c_{s}}{c_{s}}$ $U = d^{3}x \stackrel{k_{D}}{=} \frac{\hbar\omega}{\exp \frac{\hbar\omega}{2} - 1} \frac{3 k^{2} dk}{2^{2}} = V \stackrel{\omega_{D}}{=} \frac{\hbar\omega}{\exp \frac{\hbar\omega}{2} - 1} \frac{3 \omega^{2} d\omega}{2^{2} c_{s}^{3}}$ for $\tau <<\omega_{D}$ $U = \frac{3\tau^{4}}{2\hbar^{3} c_{s}^{3}} V \frac{x^{3} dx}{e^{x} - 1} = \frac{2}{10\hbar^{3} c_{s}^{3}} V k_{B}^{4} T^{4}$ Introducing the Debye temperature $T_{D} = \theta = \frac{\hbar c_s}{k_B} - 6 \frac{2}{V} \frac{N}{V} = \frac{\hbar \omega_D}{k_B}$ $U = \frac{3}{5} \, {}^{4}k_{B}N\frac{T^{4}}{T_{D}^{3}} \qquad C_{V} = \frac{12}{5} \, {}^{4}k_{B}N \frac{T}{T_{D}}^{3} \qquad \sigma = \frac{12}{15} \, {}^{4}k_{B}N \frac{T}{T_{D}}^{3}$

Applications

Calorimetry: Measure energy deposition by temperature rise $\Delta T = \frac{\Delta E}{C}$ need small C Heat Capacity ΔE **Bolometry:** Measure energy flux by temperature rise Chopping e.g., between sky and calibration load Sky ΔF Load T = need small G but time constant = - limited by stability small heat capacity C G Heat Conductivity G Very sensitive! $C T^3$ Heat capacity goes to zero at low temperature Fluctuations $\sigma_{\Delta E} = \sqrt{k_B T^2 C} T^{\frac{5}{2}} M^{\frac{1}{2}}$ Wide bandwidth (sense every frequency which couples to bolometer) Study of cosmic microwave background 300mK 100mK 4K **Bolometers** Search for dark matter particles 170g at 20mK

Physics 112-5 (F2002)