The Black Body Radiation

= Chapter 4 of Kittel and Kroemer

The Planck distribution

Derivation

Black Body Radiation

Cosmic Microwave Background The genius of Max Planck

Other derivations

Stefan Boltzmann law

Flux => Stefan- Boltzmann Example of application: star diameter

Detailed Balance: Kirchhoff laws

Another example: Phonons in a solid

Examples of applications Study of Cosmic Microwave Background Search for Dark Matter

The Planck Distribution

Mode characterized by

Frequency Angular frequency $\omega = 2$

Number of photons s in a mode \Rightarrow energy s is an integer ! Quantification $\varepsilon = s h v = s \hbar \omega$

Similar to harmonic oscillator

Photons on same "orbital" cannot be distinguished. This is a *quantum state,* not s systems in interactions!

Occupation number

Black Body Radiation

Maxwell equations in vacuum

EXECUTE: Equations in vacuum
\n
$$
\vec{E} = \frac{\rho}{\varepsilon_0} = 0 \quad \times \vec{E} = -\frac{\vec{B}}{\vec{E}} = \frac{\vec{E}}{t}
$$
\n
$$
\vec{B} = 0 \quad \times \vec{B} = \mu_o \quad \vec{j} + \varepsilon_o \frac{\vec{E}}{t} = \mu_o \varepsilon_o \frac{\vec{E}}{t} = \frac{1}{c^2} \frac{\vec{E}}{t} \quad (\vec{j} = 0!)
$$
\nUsing identity $\vec{x} \times \vec{E} = \frac{1}{c} \left(\frac{1}{c} \vec{E} \right) - 2 \vec{E}$
\n
$$
2 \vec{E} = \frac{1}{c^2} \frac{2 \vec{E}}{t^2}
$$
 (wave equation)
\nSolutions $\vec{E} = \vec{E}_o \exp\left(i(\vec{k} \cdot \vec{x} - \omega t)\right)$ with $k = \frac{\omega}{c}$ and $\vec{k} \cdot \vec{E}_o = 0$ $p = \hbar k = \frac{\hbar \omega}{c} = \frac{\varepsilon}{c}$

=> Photon has zero mass and 2 polarizations

Radiation energy between ω and $\omega + d\omega$?

State (=mode)density in phase space
\n
$$
2 \frac{d^3 x d^3 p}{h^3}
$$
 integrating over angles $\frac{d^3 x p^2 dp}{2h^3} = \frac{d^3 x \omega^2 d\omega}{2c^3}$
\n= density of energy

 $u_{\omega}d\omega =$ # states unit volume ×energy of state × average occupation number

$$
u_{\omega}d\omega = \frac{\omega^2 d\omega}{2c^3} \times \hbar \omega \times \frac{1}{\exp \frac{\hbar \omega}{\tau} - 1} \qquad \frac{\text{or}}{u_{\omega}d\omega} = \frac{\hbar \omega^3 d\omega}{2c^3 \exp \frac{\hbar \omega}{\tau} - 1} = u_{\nu}d\nu = \frac{8\pi h v^3 d\nu}{c^3 \exp \frac{h\nu}{\tau} - 1}
$$

Cosmic Microwave Radiation

Big Bang=> very high temperatures!

When T 3000K, $p+e$ recombine \Rightarrow H and universe becomes transparent

Conclusions:

• Very efficient thermalization

In particular no late release of energy

• No significant ionization of universe since!

e.g., photon-electron interactions= Sunyaev-Zel'dovich effect

- Fluctuations of $T = >$ density fluctuations
	- COBE DMR result

The genius of Max Planck

Before

Physicists only considered continuous set of states (no 2nd quantization!) Partition function of mode

$$
Z_{00} = 0 dx \exp{-\frac{\hbar \omega x}{\tau}} = \frac{\tau}{\hbar \omega}
$$

Mean energy in mode

 $=\frac{c - i\omega g Z}{\pi} = \tau$ independent of 2 *log Z* =

Sum on modes \Rightarrow infinity = "ultraviolet catastrophe"

Other derivations (1)

Grand canonical method

What is μ ? There is no exchange of photons with reservoir (only exchange of energy) => entropy of reservoir does not change with the number of photons in the black body (at constant energy) Zero chemical potential! => $s\rangle =$ 1 *exp* $\frac{\hbar}{\hbar}$ $\frac{1}{2}$ −1

$$
\left.\frac{\sigma_R}{N_{\gamma BB}}\right|_U = \frac{-\mu_\gamma}{\tau} = 0
$$

Microscopic picture

Photons are emitted and absorbed by electrons on walls of cavity We have the equilibrium Special case of equilibrium (cf Kittel & Kroemer Chap. 9 p. 247) +*e e*

 $A + B$ *C*

Equilibrium corresponds to maximum entropy $d\sigma = 0$ \Rightarrow

In particular

$$
d\sigma|_{U,V} = \frac{\sigma}{N_A} dN_A + \frac{\sigma}{N_B} dN_B + \frac{\sigma}{N_C} dN_C = 0
$$

$$
dN_A = dN_B = -dN_C
$$

$$
\mu_A + \mu_B - \mu_C = 0
$$

$$
\mu_Y + \mu_e - \mu_e = 0 \qquad \mu_Y = 0
$$

this is due to the fact that the number of photons is not constant

Other derivations (2)

Microcanonical method (Done in Homework)

To compute mean number photons in one mode, consider ensemble of N oscillators at same temperature and compute total energy U \Rightarrow Microcanonical= compute entropy $\sigma(U)$ with $U = n\hbar\omega$ (n photons in combined system) and define temperature at equilibrium as $\frac{1}{1}$ We have to compute the multiplicity $g(n,N)$ of number of states with energy U= number of combinations of N positive integers such that their sum is n Same problem as coefficient of t^n in expansion (cf Kittel chap. 1) t^m \Rightarrow $g(n, N) = \frac{1}{N}$ Using Stirling approximation = lim $\overline{\rm N}$ *U N* $\langle s \rangle =$ h = lim $\overline{\mathbf{N}}$ *U N*h *n! n t n* 1 $\left(\frac{1}{1-t}\right)$ *N t*=0 = 1 *n!* $N \left(N+1\right) \left(N+2\right) \left(N+n-1\right) =$ $(N + n - 1)$ *n!*(*N* −1)*! m*=0 \overline{r} $\frac{1}{\sqrt{2}}$ *N* = 1 $\left(\frac{1}{1-t}\right)$ *N* $= g(n, N)t^n$ *n* $(n) = log(g(n, N))$ $Nlog(1 + \frac{n}{n})$ $\left(1+\frac{N}{N}\right)+n\log(1+\frac{N}{N})$ *N* $\left(1+\frac{n}{n}\right) = N log(1+\frac{n}{n})$ *U* $\hbar \omega N$ $\left(1+\frac{1}{\hbar\omega M}\right)+$ *U* h $log(1 +$ *N*h $\left(1+\frac{U}{U}\right)$ $\frac{i}{\cdot}$ *ni i*=1 *N* $= n =$ *U* h $n_i \quad 0$ = *U* (U) $U(\tau)$ $\langle s \rangle(\tau)$

$$
\Rightarrow \qquad \frac{1}{\tau} = \frac{\sigma}{U} = \frac{1}{\hbar\omega} \log 1 + \frac{N\hbar\omega}{U} = \frac{1}{\hbar\omega} \log 1 + \frac{1}{\langle s \rangle} \qquad \text{or} \qquad \langle s \rangle = \frac{1}{\exp \frac{\hbar\omega}{\tau} - 1}
$$

Counting Number of States

Fluxes

Energy density

So far energy density integrated over solid angle. If we are interested in energy density traveling traveling in a certain direction, isotropy implies

$$
u_{\omega}(\Omega)d\omega d\Omega = \frac{\hbar\omega^{3}d\omega d\Omega}{4\sigma^{3}c^{3} \exp{\frac{\hbar\omega}{\tau}}-1}
$$

Note if we use instead of

$$
u_{\nu}(\)d\nu d = \frac{2h\nu^{3}d\nu d}{c^{3} \exp{\frac{h\nu}{\tau}}-1}
$$

Flux in a certain direction

(Energy /unit time, area, solid angle,frequency)

$$
I_{\rm v}d{\rm v}d{\rm Ad}\Omega = cu_{\rm v}d{\rm v}d{\rm Ad}\Omega = \frac{2h{\rm v}^3d{\rm v}d{\rm Ad}\Omega}{c^2 \exp{\frac{h{\rm v}}{\tau}}-1}
$$

Flux through a fixed opening

(Energy /unit time, area,frequency)

$$
J_{\nu}d\mathsf{v}dA = d\mathsf{v}dA \, \, \mathop{\circ}^{2} \, d\varphi \, \, \mathop{\circ}^{1}J_{\nu} \, \cos\theta \, \, d\cos\theta = \frac{2 \, h\nu \, \mathop{\circ}^{3} d\mathsf{v}dA}{c^{2} \, \exp\, \frac{h\nu}{\tau} - 1} = \frac{c}{4} u_{\nu} d\mathsf{v}dA
$$

Stefan-Boltzmann Law

 $\frac{2}{k}$ ⁴ $\frac{4}{B}$ 4

Total Energy Density*** Integrate on Change of variable *u* 0 $d\omega$ = 1 $2c^3$ $\hbar \omega^3$ *exp* $\frac{\hbar}{\hbar}$ $\frac{1}{\sqrt{2}}$ $0 \quad {}^{2}c^{3} \quad exp \quad \frac{\hbar\omega}{\omega} \quad -1$ *d* $x =$ \hbar *u* 0 $d\omega$ = 4 $\overline{\hbar^3}$ $\overline{2}$ c^3 *x* 3 *dx* 0 e^{x} −1 *x* 3 *dx* 0 $\overline{e^x-1}$ = 4 15 $u =$ 2 $\overline{15h^3c^3}$ $4 = a_B T^4$ with $a_B =$ $\sqrt{15h^3c^3}$

Total flux through an aperture***

Integrate J $=$ multiply above result by $c/4$

$$
J = \frac{2}{60\hbar^3 c^2} \tau^4 = \sigma_B T^4
$$
 with $\sigma_B = \frac{2k_B^4}{60\hbar^3 c^2} = 5.67 \ 10^{-8} \ W/m^2/K^4$

Stefan-Boltzmann constant!

Spectrum at low frequency

Applications

Many! **e.g. Star angular diameter** Approximately black body and spherical! Spectroscopy =>Effective temperature Apparent luminosity *l* =power received per unit area But power output $L = 4 r^2$ => Baade-Wesserlink distance measurements of varying stars • Oscillating stars (Cepheids, RR Lyrae) • Supernova Luminosity/temperature variation Doppler If spherical expansion $l = \frac{L\Omega_e}{4}$ 4 1 *Ar* = *L* $4 \frac{d^2}{2}$ $B T_{\rm eff}^4$ *l* = *r* 2 $\int_{d}^{r} \sigma_B T_{\text{eff}}^4$ angular diameter = *r d* = *l* $_{B}T_{\mathrm{eff}}^{4}$ *d dt* = *d dt l* $_{B}T_{\mathrm{eff}}^{4}$ $\frac{1}{4}$ = 1 *d dr dt* velocity $v_{1/2} = \frac{1}{2}c =$ *dr*// *dt d* = *dr*// *dt d dt ^e* = *Ar* $d \quad \Omega_e = \frac{d^2}{d^2}$ *e Ar dr*// *dt* = *dr dt dr dt dr*// *dt* given by Doppler shift

Entropy, Number of photons

Entropy

Detailed Balance: Kirchhoff laws

Definition: A body is black if it absorbs all electromagnetic

radiation incident on it

Usually true only in a range of frequency

e.g. A cavity with a small hole appears black to the outside

Detailed balance: in thermal equilibrium, power emitted= power received! Otherwise temperature would change! Consequence: The spectrum of radiation emitted by a black body is the "black body" spectrum calculated p. 4. w_{day} We could have inserted a filter $u_{BB}(\omega) d\omega = u_{cavity}(\omega) d\omega$ **Absorptivity, Emissivity**: Absorptivity =fraction of radiation absorbed by body Emissivity = ratio of emitted spectral density to black body spectral density. Kirchhoff: Emissivity=Absorptivity $a(\omega) = e(\omega)$ **Applications:** Johnson noise of a resistor at temperature T Superinsulation (shinny) Cavity Black Body Proof : c 4 Au_{BB} = c 4 Au_{cavity} *u_{BB}* = u_{cavity} χ received power = $a(\omega)u_{BB}(\omega) d\omega$ = emitted power = $e(\omega)u_{BB}(\omega) d\omega$ Rayleigh – Jeans =>Spectral density = $k_B T$ $d\left\langle V_{\text{noise}}^{2}\right\rangle$ *d* $= 4k_BTR$ **Black** Body Grey Body We will come back to this !

Phonons in a solid

Phonons:

k

Phonons in a Solid

Debye law $\int_{0}^{\omega_D} V D(\omega)$ D^D VD (ω) $d\omega = \int_0^{\omega} V$ $3 \omega^2$ ⁰ 2² c_s^3 $\omega_D = \frac{\omega}{\omega D} d\omega = 3N$ $\omega_D =$ 6*N V* $\frac{6N}{V}\pi^{2}c_{s}^{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\overline{}^3$ 1 $3 = 6$ ϵ ² $\overline{}$ ϵ $\frac{1}{2}$ $\overline{3}$ 1 $\frac{1}{3}$ $\frac{c_s}{s}$ *a* $U = d^3x \quad k_D \frac{\hbar}{\hbar}$ $\exp^{-\frac{\hbar}{2}}$ \overline{a} −1 ϵ 3 *k* 2 *dk* $\frac{1}{2}$ exp $\frac{\hbar\omega}{2}$ -1 2² k_D $\frac{\hbar \omega}{\omega} = V \omega_D - \frac{\hbar}{\omega}$ $\exp^{-\frac{\hbar}{2}}$ $\overline{}$ −1 $\overline{\mathbf{a}}$ $3 \omega^2 d$ $\exp \frac{\hbar \omega}{-1}$ -1 2 $^{2}c_{s}^{3}$ *D* for $\tau \ll \omega$ $U =$ 3τ ⁴ $2\hbar^{3}$ ² c_s ³ *V x* 3 *dx* $\frac{1}{e^x-1}$ 2 $10\hbar^{3}c_{s}^{3}$ V *k*_B 4T 4 Introducing the Debye temperature $T_p = \theta = \frac{\hbar c_s}{k}$ *k B* 6 ² *N V* $\overline{}$ $\frac{1}{\sqrt{2}}$ 1 / 3 = $\hbar \omega_{D}$ *k B* $U =$ 3 5 $4k_BN$ *T* 4 *T D* $\frac{1}{3}$ $C_V =$ 12 5 $4k_BN$ *T T D* $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ 3 = 12 15 $4k_BN$ *T T D* $\overline{}$ $\frac{1}{2}$ $\frac{1}{2}$ 3

Applications

Physics 112-5 (F2002)