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Abstract

This paper introduces various inference rules
(deduction, abduction, and induction) in Non-
Axiomatic Logic. These rules are represented in a
term-oriented language, and justified according to a
common semantic foundation. The implementation
and application of these rules are briefly described.
Finally, this approach is compared with the other
approaches, specially with respect to abduction.

1 Introduction

In the study of artificial intelligence, many researchers reach
the conclusion that the currently dominating logic system,
First-Order Predicate Logic (FOPL), is not a proper model
of intelligent reasoning, and various alternative logic systems
have been proposed. Non-Axiomatic Logic (NAL)[Wang,
1994; Wang, 1995; Wang, 2000] is one of them.

What distinguishes NAL from other logic systems is its as-
sumption ofinsufficient knowledge and resources. When the
logic is used to answer questions according to given knowl-
edge, the knowledge may be uncertain and incomplete (with
respect to the questions), and the system may not have enough
time to consider all relevant knowledge for a given question.
Consequently, each piece of knowledge in such a system is
only true to a certain degree, which can be revised according
to new evidence. Also, the system must use plausible infer-
ence rules to derive “best guesses” when no sure or optimum
answers can be obtained.

It is easy to see that FOPL cannot be used in the above situ-
ation. In the following, it will be shown that a logic designed
to work in such a situation needs a new formal language, a
new semantic theory, and a new set of inference rules.

Among the various aspects of NAL, this paper is focused
on abduction. For other relevant issues, please see the pub-
lications in the author’s webpage. In the following, we start
with a review of First-Order Non-Axiomatic Logic (FONAL),
which has been mostly covered by previous publications on
NAL, but is needed to understand the new progress. Then,
Higher-Order Non-Axiomatic Logic (HONAL) is formally
specified for the first time. Finally, NAL is compared with
the other approaches, specially in its treatment of abduction.

2 First-Order Non-Axiomatic Logic
This section provides an updated summary of FONAL, based
on the previous publications[Wang, 1994; Wang, 1995;
Wang, 2000].

2.1 Language and semantics
Under the assumption of insufficient knowledge and re-
sources, a statement in NAL cannot be either completely true
or completely false. Instead, its truth value must be a mat-
ter of degree. Since the only available information about the
world is the system’s “experience”, i.e., stream of input state-
ments (with their truth values), the truth value of a statement
should indicates its relationship with available evidence in the
experience of the system.

Therefore, NAL needs a formal language in which the
(positive and negative) evidence for a given statement can
be naturally defined and measured, which in turn defines the
truth value of the statement. For this reason, NAL use aterm-
oriented language.

In NAL, an Inheritance relation“⊂” is a reflexive and tran-
sitive relation defined between asubject termS and apred-
icate termP , where aterm is the name of a concept. Intu-
itively, a statementS ⊂ P says thatS is aspecializationof
P , andP is ageneralizationof S. This roughly corresponds
to “S is a kind ofP ” in English. For example, “Bird is a kind
of animal” can be represented asbird ⊂ animal.

In NAL, theextensionandintensionof a termT are defined
as sets of terms:

TE = {x | x ⊂ T} ; T I = {x | T ⊂ x}

Intuitively, they include all known specialization (instances)
and generalizations (properties) ofT , respectively.1

Please note that the above definition of extension and in-
tension of a term is different from the common one, where
the “extension” of a term is the corresponding “objects” in
an outside world, while its “intension” is the correspond-
ing concepts in a Platonic space. NAL cannot accept such
a definition, because neither such an outside world nor such
a Platonic space can be assumed with insufficient knowledge.
Even though, the NAL definition still preserves the intuitive

1The notations for extension and intension used in this paper are
different from those in previous publications on NAL, whereET

andIT were used.



meaning of the two words, that is, “extension” is for “in-
stances”, which are more specific than the term itself, while
“intension” is for “properties”, which are more general. Un-
der the NAL definition, “extension” and “intension” is a dual
relation among terms. That is,T1 is in the extension ofT2, if
and only ifT2 is in the intension ofT1.

From the reflexivity and transitivity of Inheritance, it can
be proven that

(S ⊂ P ) ⇐⇒ (SE ⊆ PE) ⇐⇒ (P I ⊆ SI)

where the first relation is an Inheritance relation between two
terms, while the last two are subset relations between two sets
(extensions and intensions of terms).

The above theorem identifiesS ⊂ P with “P inherits the
extension ofS, andS inherits the intension ofP ”, which
is a summary of multiple statements, so can be used as ev-
idence for the Inheritance statement. Uncertain statements
correspond to the situations where the above inheritance of
extension and intension is incomplete.

For a statementS ⊂ P and a termM , we have

• if M is in the extensions of bothS andP , it is posi-
tive evidence for the statement (because as far asM is
concerned,P indeed inherits the extension ofS);

• if M is in the extensions ofS but not the extension ofP ,
it is negative evidence (because as far asM is concerned,
P fails to inherit the extension ofS);

• if M is in the intensions of bothP andS, it is positive
evidence for the statement (because as far asM is con-
cerned,S indeed inherits the intension ofP );

• if M is in the intension ofP but not the intension ofS, it
is negative evidence (because as far asM is concerned,
S fails to inherit the intension ofP );

• otherwise,M is irrelevant to the statement.

Therefore, when all pieces of evidence are treated as equal,
the amount of positive evidence is

w+ = |SE ∩ PE |+ |P I ∩ SI |

the amount of negative evidence is

w− = |SE − PE |+ |P I − SI |

and the amount of all evidence is

w = w+ + w− = |SE |+ |P I |

Thetruth valueof a statement in NAL is a pair of numbers
in [0, 1],<f, c>. f is thefrequencyof the statement, defined
as

f = w+/w

so it indicates the proportion of positive evidence among all
evidence.c is theconfidenceof the statement, defined as

c = w/(w + 1)

so it indicates the proportion of current evidence among evi-
dence in the near future (after a unit-weight evidence is col-
lected). Whenf = 1, it means that all known evidence is pos-
itive; whenf = 0, it means that all known evidence is nega-
tive; whenc = 0, it means that the system has no evidence on

the statement at all (andf is undefined); whenc = 1, it means
that the system already has all the evidence on the statement,
so that it will not be influenced by future experience. There-
fore, “absolute truth” has a truth value<1, 1>, and in NAL
S ⊂ P < 1, 1 > can be written asS ⊂ P , as we did ear-
lier in the discussion. Under the “insufficient knowledge” as-
sumption, such a truth value cannot be reached by empirical
knowledge, though it can be used for analytical knowledge
(such as theorems in mathematics), as well as serve as ide-
alized situation in semantic discussions. For a more detailed
discussion on frequency, confidence, and their relation with
probability theory, see[Wang, 2001].

In this way, we get an “experience-grounded semantics”,
where truth value of a statement indicates its relation with
available evidence, rather than its relation with a model or an
“outside world”.

2.2 Basic inference rules
The above subsection defines truth value in terms of amount
of evidence collected in idealized situation (so the evidence
itself is certain). In actual situation, the truth value of a state-
ment cannot be determined in this way. Instead, the input
knowledge comes into the system with truth value assigned
by the user or other knowledge sources (according to the
above semantics), and derived knowledge is produced recur-
sively by the built-in inference rules, which have truth value
functions that determine the truth value of the conclusion ac-
cording to those of the premises. The truth value functions
are defined according to the above semantics.

Typical inference rules in term logic take asyllogisticform,
that is, given a pair of statements, if they share a common
term, then a conclusion between the other two (not shared)
terms can be derived by an inference rule.

Different combinations of premises correspond to different
inference rules, as listed in the following table:

Deduction : M ⊂ P <f1, c1 >
S ⊂ M <f2, c2 >
————————–
S ⊂ P <f, c>

Abduction : P ⊂ M <f1, c1 >
S ⊂ M <f2, c2 >
————————–
S ⊂ P <f, c>

Induction : M ⊂ P <f1, c1 >
M ⊂ S <f2, c2 >
————————–
S ⊂ P <f, c>

Defined in this way, the difference among the three types
of inference is purely formal:

• in deduction, the shared term is the subject of one
premise and the predicate of the other;

• in abduction, the shared term is the predicate of both
premises;

• in induction, the shared term is the subject of both
premises.



If we only consider combinations of premises with one shared
term, these three exhaust all the possibilities.2

According to the previously described semantics, in NAL
an inference rule is valid as long as the conclusion is based on
the evidence provided by the premises. In different rules, the
truth value of the conclusion is determined by the truth values
of the premises in different ways.

Since frequency and confidence cannot be handled as
probability values[Wang, 2001], we treat them asextended
Boolean variablesto get the truth value functions.

Step 1: we treat all relevant variables as binary variables
taking 0 or 1 values, and determine what values the conclu-
sion should have for each combination of premises, according
to the semantics of NAL.

In the case of deduction, the result comes from the follow-
ing analysis:
• Inheritance relation is transitive in its ideal form, sof

andc are both 1 if and only iff1, c1, f2, andc2 are all 1.

• Two negative premises produce no conclusion, soc is 1
only whenf1 or f2 is 1.

• An unfounded premise produces no conclusion, soc is 1
only whenc1 andc2 are both 1.

In the cases of abduction and induction, the mid-termM is
used as possible evidence for the conclusion, so what can be
directly determined in the conclusion are notf andc, but w
andw+. Concretely, we have:
• M is positive evidence (i.e.,w+ is 1) if and only iff1,

c1, f2, andc2 are all 1.

• In abduction,M is evidence (i.e.,w is 1) if and only if
f1, c1, andc2 are 1.

• In induction,M is evidence (i.e.,w is 1) if and only if
f2, c1, andc2 are 1.

Step 2: The truth values of conclusion obtained above are
represented as Boolean functions of those of the premises.

Deduction : AND(f, c) = AND(f1, c1, f2, c2)
c = AND(c1, c2, OR(f1, f2))

Abduction : w+ = AND(f1, c1, f2, c2)
w = AND(f1, c1, c2)

Induction : w+ = AND(f1, c1, f2, c2)
w = AND(c1, f2, c2)

Step 3:The Boolean operators are extended into real num-
ber functions defined on [0, 1] in the following way:

NOT (x) = 1− x
AND(x1, ..., xn) = x1 ∗ ... ∗ xn

OR(x1, ..., xn) = 1− (1− x1) ∗ ... ∗ (1− xn)

They are the operators used in probability theory under inde-
pendent assumptions. For why this set of function is selected
in NAL, see[Wang, 1995].

2The order of the premises does not matter for our current pur-
pose. The symmetric conclusionP ⊂ S is omitted to simplify the
discussion.

Step 4:Using the extended operators, plus the relationship
between truth value and amount of evidence, to rewrite the
above functions, so to get the following truth value functions
for the rules:

Deduction : f = f1f2/(f1 + f2 − f1f2)
c = c1c2(f1 + f2 − f1f2)

Abduction : f = f2

c = f1c1c2/(f1c1c2 + 1)

Induction : f = f1

c = f2c1c2/(f2c1c2 + 1)

In deduction, whenf1 andf2 are both 0, we add the conven-
tion thatf = 0, so that the truth value function always returns
a valid value.

2.3 Other rules in FONAL
There are other rules in FONAL. In this paper we only briefly
describe some of them that are directly related to abduction.

Though the abduction (as well as deduction and induction)
rule introduced in the previous section are defined on Inheri-
tance relation, they can be used on other types of relations.

For example, an arbitrary relationR among three terms
A, B, andC is usually written asR(A,B,C), which can
be equivalently rewritten as one of the following Inheritance
statements (i.e., they have the same meaning and truth value):

• (A,B,C) ⊂ R, where the subject term is a compound
(A,B,C), an ordered tuple. This statement says “The
relation amongA, B, C (in that order) is a special case
of the relationR.”

• A ⊂ R(∗, B,C), where the predicate term is a com-
poundR(∗, B, C) with a “wildcard”, ∗. This statement
says “A is such anx that satisfiesR(x, B,C).”

• B ⊂ R(A, ∗, C). Similarly, “B is such anx that satisfy
R(A, x,C).”

• C ⊂ R(A,B, ∗). Again, “C is such anx that satisfy
R(A,B, x).”

In this way, all types of relations can be treated as Inher-
itance by the rules defined previously. For example, from
R(A,B,C) and R(A,B,D), C ⊂ D can be derived by
the abduction rule (truth values omitted in this example).
This is the case because the two premises can be rewritten
asC ⊂ R(A,B, ∗) andD ⊂ R(A,B, ∗), and from them
C ⊂ D (andD ⊂ C, of course) can be derived by abduction.
Intuitively, sinceC andD share the same relationR with A
andB, Inheritance relations between the two are supported to
a degree.

Therefore, withtransformation rules that convert a state-
ment to its equivalent forms, the system can do abduction (as
well as other types of inference) on arbitrary types of rela-
tions. Please note that these relations have a position differ-
ent from that of the Inheritance relation in NAL. Inheritance
is “built-in” for NAL, in the sense that its meaning is fixed,
and directly recognized by the inference rules. On the other



hand, the other relations are “user-defined”, whose meaning
is learned by the system according to relevant experience.
They are processed by the inference rules indirectly, as In-
heritance relations consisting of compound terms. Whether
to let Inheritance play a central role is a major difference be-
tween NAL and FOPL, in the latter Inheritance (similar to the
often used “is-a”) is treated just like other relations.

The revision rule merges statements that have the same
content (i.e., the sameS ⊂ P form), but based on separated
bodies of evidence. Formally, it has the form

Revision : S ⊂ P <f1, c1 >
S ⊂ P <f2, c2 >
————————–
S ⊂ P <f, c>

Given the additivity of evidence during revision, we have

w+ = w+
1 + w+

2 ; w = w1 + w2

which corresponds to the following truth value function:

f = f1c1/(1−c1)+f2c2/(1−c2)
c1/(1−c1)+c2/(1−c2)

c = c1/(1−c1)+c2/(1−c2)
c1/(1−c1)+c2/(1−c2)+1

This rule can merge multiple abductive conclusions into a
more confident one.

Thechoicerule determines which statement is more likely
to be confirmed in the future among a given set of statements.
What it does is to pick the one with the highestexpectation
value, defined as

e = c(f − 0.5) + 0.5

This rule can be used to select the best abductive conclusion,
according to both frequency and confidence.

For a more detailed discussion about the revision rule and
the choice rule, see[Wang, 1995].

2.4 Implementation of NAL
NAL is a logic, with its formal language, semantics, and in-
ference rules. This logic can be used in a reasoning sys-
tem, if proper memory and control mechanism are provided.
Such a system, Non-Axiomatic Reasoning System (NARS),
has been under development for years. The current version,
NARS 4.1, is a Java applet available at the author’s webpage,
which contains several simple examples to show the various
aspects of the system.

Like NAL, NARS is also designed under the assumption
of insufficient knowledge and resources. What NARS has
beside NAL is a resource management mechanism that han-
dles the limited time and space resources, as well as a user
interface to communicate with the users and other systems.
To describe NARS as a whole is far beyond the scope of this
paper. Interested readers can visit the author’s webpage.

A customized version of NAL has been integrated into
the design of a commercial software, Webmind. Though the
project has not been finished yet, NAL has shown its advan-
tage over FOPL in the development so far. For more informa-
tion about this project, visithttp://www.webmind.com.

3 Higher-order Non-Axiomatic Logic
This section describes the recent progress which is not cov-
ered by previous publications on NAL.

3.1 Extended language and semantics
While the Inheritance relation is introduced as a relation be-
tweenterms, ahigher-order relationis a relation defined be-
tweenstatements. Concretely, we define anImplicationrela-
tion as a reflexive and transitive relation between two state-
ments. Intuitively, an Implication statementP → Q means
“If P , thenQ”, whereP andQ are statements themselves.
For example,(dove ⊂ bird) → (dove ⊂ animal) is an Im-
plication statement, with (first-order) statementsdove ⊂ bird
anddove ⊂ animal as components. This statement says “If
dove is a kind of bird, then dove is a kind of animal”.

In NAL, Implication is defined in a way that makes it com-
pletely isomorphic to Inheritance.

In the place of extension and intension, here we havesuffi-
cient conditionandnecessary condition, that is, whenP → Q
is true, we callP a sufficient condition ofQ, andQ a neces-
sary condition ofP . Formally, thesufficient conditionsand
necessary conditionsof a statementP are defined as sets of
statements:

PS = {x | x → P} ; PN = {x | P → x}

Parallel to the case of Inheritance relation, positive evi-
dence ofP → Q consists of shared sufficient and necessary
conditions ofP andQ, while negative evidence consists of
the sufficient conditions ofP but not of Q, and necessary
conditions ofQ but not ofP . Formally, we have

w+ = |PS ∩QS |+ |QN ∩ PN |

w− = |PS −QS |+ |QN − PN |

w = w+ + w− = |PS |+ |QN |
Truth value of an Implication statement is defined in the

same way as that of an Inheritance statement, that is,

f = w+/w ; c = w/(w + 1)

Defined in this way, Implication is completely isomorphic
to Inheritance, so that for each result on Inheritance, there is
a corresponding result on Implication. On the other hand, the
two are not the same, because “A is a kind ofB” and “If A,
thenB” have different meaning. Inheritance “A is a kind of
B” cannot be simply understood as “Ifx is a kind ofA, then
x is also a kind ofB” where x is a variable, but should be
understood as “Ifx is a kind ofA, then it is also a kind of
B; if B is a kind ofy, thenA is also a kind ofy”. The latter
statement is a conjunction of two Implication statements, and
cannot be reduced into a single Implication statement without
changing its meaning in the context of NAL.

3.2 Basic higher-order inference rules
Given the isomorphism between Inheritance and Implication,
we can easily get a set of HONAL inference rules from the
FONAL rules developed previously. For example, HONAL
has the following higher-order syllogistic rules:



Deduction : M → P <f1, c1 >
S → M <f2, c2 >
————————–
S → P <f, c>

Abduction : P → M <f1, c1 >
S → M <f2, c2 >
————————–
S → P <f, c>

Induction : M → P <f1, c1 >
M → S <f2, c2 >
————————–
S → P <f, c>

The truth value function for each rule is the same as in the
corresponding rule of Inheritance relation, though the rules
in these two tables are not identical, but isomorphic.

Similarly, the FONAL rules for revision, choice, and trans-
formation have their corresponding forms in HONAL.

3.3 Treating any statement as Implication
As discussed previously, an Inheritance statement cannot be
seen as an Implication statement by taking a term as a corre-
sponding statement. However, there is another way to relate
the two types of statements.

By definition, S ⊂ P < f, c > says that “The belief
the system has on statementS ⊂ P , according to available
evidence, is measured by truth value< f, c >”. Now if
we assume the available evidence onS ⊂ P can be written
as a complex statementE, then the same meaning can be
represented byE → (S ⊂ P ) < f, c >, that is, “The belief
the system has on statement ‘IfE is true, thenS ⊂ P is true’
is measured by truth value<f, c>”. In this way, a statement
S is equivalently transformed into an Implication statement
E → S (“If the available evidence is true, thenS is true”).

This transformation is a conceptual one, not an actual one
in the sense that there is a statement used by NAL correspond-
ing to the aboveE. This conceptual transformation is intro-
duced to help us to find valid inference rules. Specially, now
we can handle the following situations where Inheritance and
Implication statements are mixed together (truth values omit-
ted):

• M , when being treated asE → M , will do deduction
with M → P to getE → P , which is actuallyP .

• M , when being treated asE → M , will do abduction
with P → M to getE → P , which is actuallyP .

• P andS, when being treated asE → P andE → S,
respectively, will doinduction together to getS → P
(andP → S, of course).

Please note that in induction, the two premises should be
indeed derived from the same evidence. It is a difference
between NAL and traditional propositional logic: given the
truth value ofS andP , the truth value ofS → P is not al-
ways derivable, and even when it can be derived, it usually
has a much lower confidence value thanM andP have.

By hiding the conceptual transformation introduced above
and adding truth values back, we get the third table of infer-
ence rule:

Deduction : M → P <f1, c1 >
M <f2, c2 >
————————–
P <f, c>

Abduction : P → M <f1, c1 >
M <f2, c2 >
————————–
P <f, c>

Induction : P <f1, c1 >
S <f2, c2 >
————————–
S → P <f, c>

What we get here is very similar to how the three types of
inference are defined in propositional logic[Aliseda, 2000;
Flach and Kakas, 2000], except in NAL the statements have
truth values attached to indicate their uncertainty. Since this
table can be seen as a special case of the second table, the
truth value functions remain unchanged.

In summary, HONAL has three types of syllogistic infer-
ence rules, that is, three forms of abduction (and the same
for deduction and induction). The three types share the same
truth value function, though each rule has its own meaning
and applicable situation.

4 Comparison and Discussion
As mentioned at the beginning of the paper, NAL is proposed
as a logic that assumes the insufficiency of knowledge and re-
sources. In a sense, it challenges the dominating position of
FOPL and its variants in the study of Artificial Intelligence.
Since most existing approaches toward abduction are devel-
oped within the framework of FOPL (see[Flach and Kakas,
2000] for a survey), it is not a surprise that NAL is different
from them in several major issues.3

4.1 Syllogistic and inferential definition of
abduction

Different definitions have been proposed for abduction (as
well as for induction, and even deduction). On this issue, I
fully agree with Flach and Kakas [2000] that we should not
treat “abduction” as a Platonic concept waiting to be found,
but should build useful definitions that help the research. For
this reason, what Peirce had in mind when he coined the term
“abduction”, or why he changed his mind in later years, only
serves as important source of inspiration, but not as sole stan-
dard to judge the validity of a definition of abduction.

Approaches of defining abduction can be classified into
two types: syllogistic and inferential. An inferential def-
inition identifies abduction as a type of inferenceprocess
that carries out a certain cognitive function, such asexpla-
nationor hypothesis generation, while a syllogistic definition

3This paper will not touch differences between NAL and FOPL
that are not directly related to abduction.



specifies it as a type of inferencestepwith a specific pat-
tern[Flach and Kakas, 2000; Josephson and Josephson, 1994;
Wang, 2000].

As shown by the three rule tables, in NAL the distinction
among deduction, abduction, and induction is formally spec-
ified at the inference-step level, according to the position of
the shared term (or statement) in the premises. Such a formal
definition makes discussions about them clear and concrete.

To use a formal definition to distinguish various inference
types does not prevent us from attribute them with different
cognitive functions. Given the definition used in NAL, it is
valid to say that among the three, only deduction produces
conclusive results, while the other two only produce tentative
results. Both abduction and induction can be seen as “re-
versed deduction”, and the former usually corresponds to ex-
planation, and the latter to generalization. These descriptions
are similar to the ones proposed as inferential definitions of
the three types. However, in NAL these descriptions aresec-
ondary, derived from the syllogistic definition. This approach
has the advantage of avoiding ambiguity and oversimplifica-
tion in the definition, and at the same time preserve the in-
tuitive meaning of the terms (i.e., deduction, abduction, and
induction) associated with different types of inference.

Though abduction defined in NAL usually can be inter-
preted as “explanation”, to define “abduction” as “explana-
tion” at the inference-process level is a quite different deci-
sion. This is the case because what we called “explanation”
in everyday thinking may include complex cognitive process
where multiple types of inference are involved. Therefore, to
abstract such a process into a consistent and non-trivial pat-
tern is not an easy thing to do, if possible[Wang, 2000].

For the same reason, to define abduction as “inference to-
ward the best explanation”[Josephson and Josephson, 1994]
makes things even harder, because besides the derivation of
explanations, this definition further requires the evaluation of
explanations, and the comparison of competing candidates.
In this process, many other factors should be taken into ac-
count, such as simplicity, surprising to the system, and rele-
vance to the given context[Aliseda, 2000; Psillos, 2000]. If
we cover all of these issues under “abduction”, it becomes
such a complex process that few concrete conclusions can be
made. Such a definition is not wrong, but not very useful.

4.2 Multi-valued and binary conclusions
Currently, most theories of abduction use binary logic[Flach
and Kakas, 2000], with a few exceptions, such as NAL and
the Bayesian approach[Poole, 2000].

In the framework of binary logic, abduction is usually
defined formally as “reverse deduction” which starts from
a given conclusion and background knowledge to find a
premise that is consistent with the background knowledge,
and derives the conclusion deductively.

Such a definition is logically sound, and can lead to fruitful
results. However, it ignores certain factors that are crucial for
a system working with insufficient knowledge and resources.

In empirical science and everyday life, we usually do not
throw away theories that have known counter examples and
inexplicable phenomena. If we do that, there is hardly any-
thing left. Since we usually have insufficient knowledge in

these domains, we have to live with imperfect knowledge, be-
cause they are still far better than random guesses. When se-
lecting among competing explanations and hypothesis, mea-
surement of (positive and negative) evidence becomes nec-
essary — if no explanation is perfect, then the one with
more positive evidence and less negative evidence is pre-
ferred, which is what measured by thefrequencydefined in
NAL. Since evidence may come from time to time, incremen-
tal revision becomes inevitable, which requires the absolute
amount of evidence to be represented in some way, and this
is how theconfidencemeasurement becomes necessary.

These measurements enrich our understanding of the in-
ference rules. In the truth value functions, we can see that
the fundamental difference between deductive inference and
non-deductive (such as abductive or inductive) inference is
in the confidence (not the frequency) of the conclusion. In
deduction, if both premises are completely true, so is the con-
clusion. However, in abduction and induction, the confidence
of the conclusion is much lower in this situation, meaning
that the conclusion is tentative even when the premises are
certain, and can be revised by new evidence.

In binary logics, such as FOPL, truth value only indi-
cates whether there is negative evidence, without measuring
it quantitatively. The concept of positive evidence does not
really exist there. As Popper [1959] argued, if knowledge is
represented as universal statement in FOPL, it can be falsified
by a piece of negative evidence, but cannot be verified by a
piece (or even many pieces) of positive evidence.

To ignore quantity of evidence means it will be hard for
the system to distinguish hypotheses that have a little of nega-
tive evidence from those that have a lot. Even for hypotheses
whose all available evidence is positive, the amount of evi-
dence still matters — a hypothesis conformed only once is
quite different from a hypothesis conformed a million times.
For these reasons, to study abduction in binary logic is not
wrong, but not very useful under the assumption of insuffi-
cient knowledge and resources.

The difference between NAL and other non-binary ap-
proaches is beyond the scope of this paper. For a comparison
of NAL and the Bayesian approach (and other probability-
based ones), see[Wang, 2001].

4.3 Term logic and predicate logic
As discussed in[Wang, 2000], NAL belongs to theterm
logic tradition, exemplified by Aristotle’s logic[Aristotle,
1989]. This kind of logic is different frompredicate logic,
like FOPL, in its subject-predicate form of knowledge repre-
sentation, and in its syllogistic form of inference rules.

Peirce found the syllogistic form of abduction by switch-
ing the conclusion and a premise in the “Barbara” syllogism
of Aristotle, though in his later work he moved to an in-
ferential definition of abduction, which is not about a sin-
gle inference step, but about a complex inference process
which consists of many steps, and the process is usually
represented in FOPL[Flach and Kakas, 2000; Peirce, 1931;
Wang, 2000]. Currently all study of abduction use FOPL or
its variations, with NAL as the only exception. For examples,
see[Flach and Kakas, 2000; Michalski, 1993].

NAL is designed to be a term logic for several reasons.



For the language, the subject-predicate form is preferred
because it provides a natural way to define “evidence” for
a statement, as shown in the previous sections. For Inheri-
tance statement, evidence is defined in terms of extensions
and intensions of the two terms that form the statement. For
Implication statement, evidence is defined in terms of the suf-
ficient conditions and necessary conditions of the two state-
ments that form the statement. In both cases, the transitive na-
ture of Inheritance and Implication, and the subject-predicate
form of the statements, are essential. Since these features are
not available in predicate logic, it will be very hard, if not
impossible, to do similar things in FOPL.

The syllogistic inference rules of term logic also have fea-
tures not available in predicate logic. As described previ-
ously, each inference rule in NAL takes a pair of statements
as premises, under the condition that they must share a term
(or a statement, for higher-order inference). The conclusion
is a statement consisting of the other two (not shared) terms
(or statements). This kind of rules has certain properties:

• For a given pair of premises, the conclusions are fully
determined, both in contents and in truth values.

• The premises and conclusions are related to each other,
both in contents and in truth values.

Though the above properties looks simple and natural, they
are not possessed by predicate logic.

In predicate logic, abduction and induction are often de-
fined as “reversed deduction”, in the sense that they are in-
ference processes that produce certain hypotheses, which are
consistent with background knowledge, and imply the given
conclusion (and with some additional properties). Defined in
this way, when the background knowledge and conclusion to
be implied are given, the hypotheses may not be fully deter-
mined, that is, many hypotheses may satisfy the condition. In
fact, this is the major reason for some people to separate “hy-
pothesis generation” and “hypothesis evaluation” — in the
framework of predicate logic, a deterministic procedure can
be found for the latter, but not for the former[Carnap, 1950;
Flach and Kakas, 2000; Peirce, 1931; Popper, 1959].

In NAL, since every piece of empirical knowledge has con-
fidence less than 1, it may be revised by future evidence. In
this sense, there is no sharp boundary between “hypothesis”,
“belief”, “knowledge”, and “fact” — their difference is rela-
tive and conventional. For example, we usually use “hypoth-
esis” for a statement with low confidence, and “fact” for one
with high confidence, though there is no qualitative difference
between the two. Therefore, in NAL all inference rules (in-
cluding deduction) on such knowledge carry out “hypothesis
generation” in the sense that the conclusions may be revised
in the future. At the same time, since each rule has a truth-
value function that evaluate the conclusion for its evidential
support, the rules also perform “hypothesis evaluation”.

The second issue, the content relevance among premises
and conclusion, will be addressed in the next subsection.

A common criticism of term logic is its “poor expressive
power”. Current logic textbooks usually refer to term logic as
out-of-date, and predicate logic as up-to-date, with the latter
cover the former as a special case. Such a judgment is fair
for Aristotle’s Syllogism, but for a term logic like NAL, it is

no longer valid. With the various relations and compounds
added into the system, NAL actually has more expressive
power than FOPL when the domain is empirical knowledge.
Also, NAL has a grammar that is closer to natural languages
than FOPL has. However, a detailed discussion on this topic
will have to be left for a future publication.

NAL is not generally better than FOPL, but it is better in
situations where the system’s knowledge and resources are
insufficient. In domains where knowledge and resources can
be assumed to be sufficient (with respect to the questions to
be answered), FOPL may still be better. Mathematics is such
a domain. FOPL was originally developed to be used in math-
ematics. It is used (and often misused) in other domains since
no other proper logic has be developed.

NAL can emulate predicate logic (or any other logic) by
representing inference rules of that logic as Implication rela-
tions, and applying them as a special case of deduction. When
a binary logic is emulated in this way, all premises will be
given confidence 1 and strength 0 or 1, and only conclusions
in such a form are accepted as final result. In this way, ab-
duction and induction cannot be used to derive final results,
though they can be used to generate and evaluate hypothe-
ses, so as to guide the deduction processes. Therefore, NAL
can be used as the meta-logic of other logics. In other words,
NAL can be used as “the logic of operating system”, which
can support various forms of application programs, each with
its own logic, and used in its own domain.

4.4 Relevant and material Implication
Though both NAL and FOPL use Implication to capture the
intuitive meaning of the “if ... then ...” structure in natural
languages, the definition in the two are quite different.

In NAL, Implication, in its idealized form, is defined to be
a reflexive and transitive binary relation between two state-
ments. In its realistic form, it is multi-valued, with its truth
value defined according to available evidence. Here evidence
is measured by comparing the sufficient and necessary condi-
tions of the two statements.

In FOPL, Implication is defined as a truth-functional struc-
ture (called “material implication”). Given arbitrary state-
mentsP andQ, P → Q is defined asOR(NOT (P ), Q)).

Though this definition is useful for various purposes, it suf-
fers from the well-known “implication paradox”, which says
that P → Q is true whenP is false (Q can be anything)
or Q is true (P can be anything). Though logically consis-
tent with FOPL, this result is highly counter-intuitive, and it
gives people a feeling that some important thing is missing in
the definition of implication in FOPL —P andQ should be
somehowrelevantto each other, which is assumed by the “if
... then ...” structure in natural languages.

A whole branch of logic, relevant logic[Read, 1988], has
been developed specially for this issue. Within the frame-
work of predicate logic, it is not easy to find a simple solu-
tion. However, in NAL, this problem does not appear in the
first place. As mentioned previously, as a term logic, in NAL
the premises and conclusion of an inference step must share
a common component, otherwise no conclusion can be de-
rived. Specially, in the induction rule of the third inference
table,P → Q can be derived fromP andQ if and only if the



two premises are based on the same (implicitly represented)
evidence, so they are guaranteed to be relevant to each other
in their contents. From an arbitrary pair of statements, noth-
ing can be derived — to know their truth values is not enough.
Even whenP → Q can be derived fromP andQ, its con-
fidence is low, because the rule is induction. Only whenP
andQ have been repeatedly supported by the same evidence
for many times (and the evidence is different at each time),
canP → Q then become more confident (by merging the
individual conclusions with the revision rule).

Defined in this way, the Implication relation in NAL is
closer to the intuitive meaning of “if ... then ...” than its
FOPL counterpart is. Consequently, it works better in causal
inference. In NAL, “causal relation” is not defined as a “built-
in” relation, as Implication and Inheritance. Instead, it is a
“user-defined” relation discussed previously, whose meaning
is learned by the system from its experience, and may change
from context to context. Even so, various forms of causal re-
lations should all share Implication as their invariable core,
though the other properties of the relation may change. This
is the case because the essence of causal inference is to pre-
dict the future according to the past.

As mentioned before, in NAL abduction often plays the
role of explanation. The Implication define above guarantees
that the explanation generated in NAL not only satisfies truth
value restriction (be consistent with background knowledge,
and can derive given conclusion by deduction), but also sat-
isfies content restriction — the explanation is always relevant
to the conclusion.

4.5 Further works in NAL
The components of NAL that are currently under develop-
ment include:
Compound terms and statements:For two given terms,

sometimes the system will form theirintersection,
union, or difference. For two given statements, some-
times the system will form theirconjunction, disjunc-
tion, or negationof either of them. There are corre-
sponding inference rules, with their truth value functions
attached, that derive statements with compound terms or
compound statements as components.

Variables: Variables will be introduced to enable more pow-
erful and flexible knowledge representation. Corre-
sponding inference rules should properly handle variable
generation, unification, and instantiation.

Procedural interpretation: By given certain relations a pro-
cedural interpretation (as in logic programming), the
higher-order inference mechanism can be used to do
planning. Furthermore, if certain relations are grounded
on executable operations in NARS, the system can exe-
cute plans and learn skills, all through inference.

After these components are added into NAL, it should be
able to provide a consistent and comprehensive logical foun-
dation for Artificial Intelligence.
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